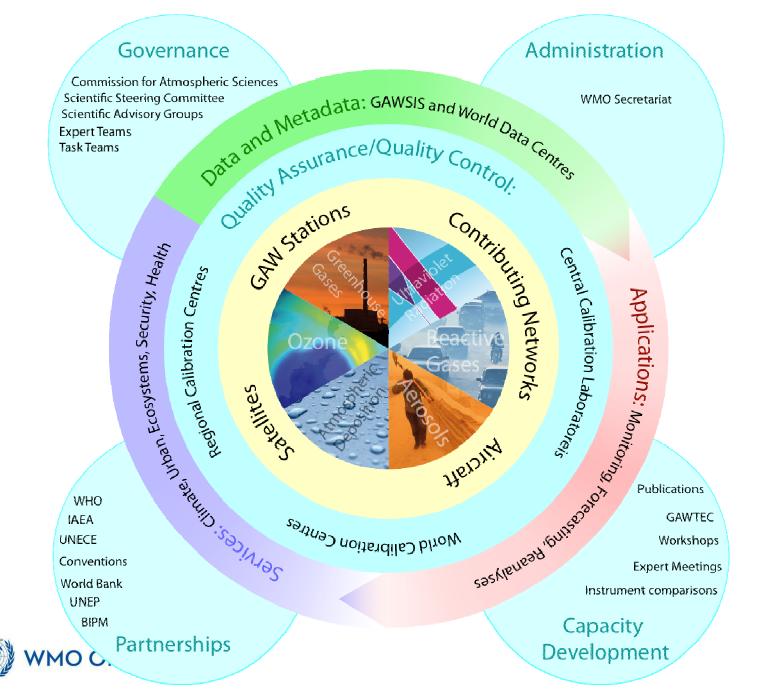


Atmospheric Composition

&

IG³IS


Submitted by Geir Braathen and Oksana Tarasova for CGMS-44

WMO OMM

World Meteorological Organization
Organisation météorologique mondiale

Governance

Scientific Advisory Groups,
Expert Teams,
Task Teams

GAW Secretariat

Commission for Atmospheric Sciences,

Environmental Pollution and Atmospheric Chemistry Scientific Steering Committee

Quality Assurance Quality Assurance & Science Activity Centres
World & Regional Calibration Centres

Central Calibration Laboratories

Host GAW World Reference Standards

Observing Systems

The GAW Structure

Contributing networks

And Stations & GAWSIS

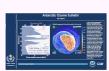
Page Virte Cape Print

American

Cape Orien

Ca

Satellites & Aircraft


Data and Products

World Data
Centres

GAW Products
GHG Bulletins
O₃ Bulletins
Assessments
Global fields

Applications, Sevices, Users Operational Centres

Programmes IGAC, WCRP...

Systems GCOS, GEO...

Conventions
UNFCCC, Vienna...

Projects

Establishment of TT-ObsReq

In 2011, the World Meteorological Congress recommended for GAW to set up an ad-hoc Task Team to review the needs for GAW regarding satellite measurements and the IGACO recommendations on these that date back to 2004. Congress further recommended that this work be done in coordination with the CBS Expert Team on Satellite Systems (ET-SAT) and the Expert Team on Evolution of the Global Observing Systems (ET-EGOS), the Committee on Earth Observation Satellites (CEOS) Atmospheric Composition Constellation group and the Coordination Group for Meteorological Satellites (CGMS) and also taking into consideration GCOS requirements and the vision for the GOS in 2025.

TT-ObsReq

- Task team was established in the autumn of 2014
 - List of members:
 http://www.wmo.int/pages/prog/arep/gaw/documents/TT-Members-2015-07-10.pdf
 - Meeting reports and other relevant documents:
 http://www.wmo.int/pages/prog/arep/gaw/TaskT
 eamObsReq.html

Task Team meetings

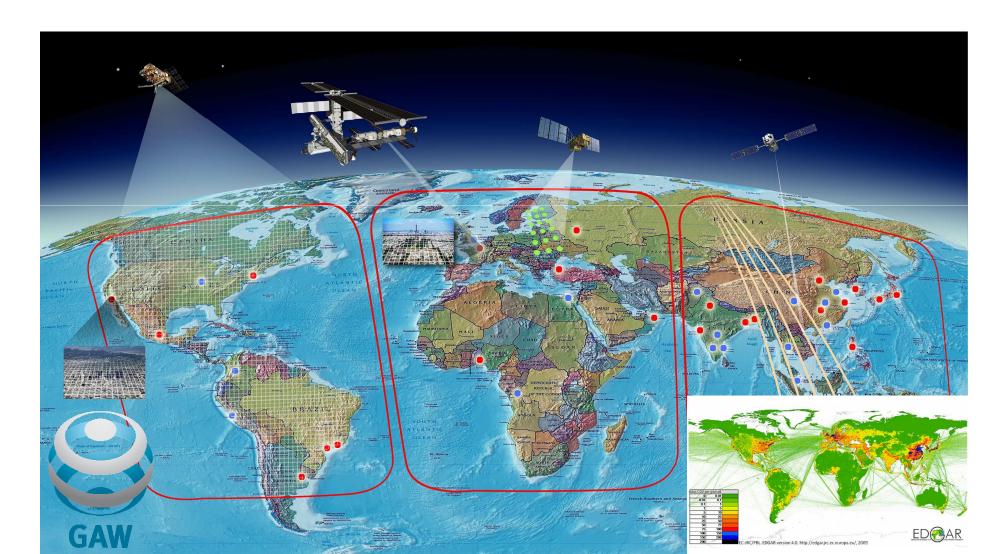
- First meeting in November 2014
 - Decision to define three application areas for the atmospheric chemistry theme:
 - I. Forecasting Atmospheric Composition
 - II. Monitoring Atmospheric Composition
 - III. Providing Atmospheric Composition information to support services in urban and populated areas
- Second meeting in August 2015

Requirements: Priority variables

- Important across all 3 application areas:
- Aerosol: PM2.5, PM10, BC, Dust (speciated), OA (including SOA), AOD, AAOD, wet deposition (speciated)
- **GHGs:** CO₂, CH₄, CFCs, HCFCs, N₂O
- Reactive Gases: O₃, SO₂, NO₂, CO, NH₃, HCHO, Isoprene, VOCs (speciated), HO_x
- Isotopes, water vapour
- Also: TOA and surface short/long-wave radiation, actinic flux, UV
- Others (which we may/will not set requirements for): clouds, PBL, tropopause height.

Involvement of SAGs

- The Scientific Advisory Groups of GAW have been engaged to work on the observational requirements for their respective parameters
- Three SAGs have responded with Excel sheets with detailed requirements
 - Greenhouse Gas SAG
 - Reactive Gases SAG
 - Solar UV Radiation SAG
- These Excel sheets have been passed on to the OSCAR team for ingestion into the OSCAR database


More details

 More details about the input received so far can be found in the submitted document

Integrated Global Greenhouse Gas information System IG³IS

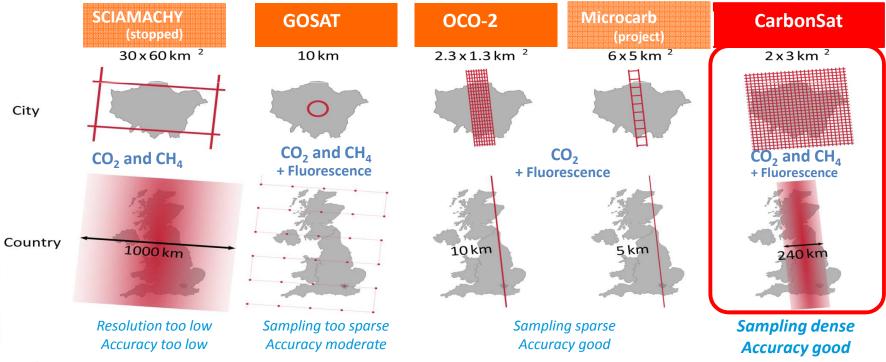
Current & planned satellite sensors for measuring

 X_{CO_2} and X_{CH_4}

CO ₂ missions																				
Satellite, Instrument (Agencies)	Spatial resolution	Swath	2002		2009 2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	202
ENVISAT SCIAMACHY (ESA-DLR-NIVR-OSTC	1800 km²	960 km																		
GOSAT TANSO-FTS (JAXA-NIES-MOE)	\sim 85 km ²	520 km (3-point)																	
OCO-2 (NASA)	2.9 km ²	10.6 km																		
TanSAT (CAS-MOST-CMA)	4 km²	20 km																		
OCO-3 (NASA)	\sim 4 km ²	16 km																		
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES)	\sim 85 km ²	632 km (5-point)																	
CarbonSat (ESA)	6 km²	240 km																Carb	onSat	
Satellite, Instrument (Agencies)	Spatial resolution		2002		2009 2010	2011	2012	2013	2014	2015	2016	201/	2018	2019	2020	2021	2022	2023	2024	202
ENVISAT SCIAMACHY (DLR-NIVR-OSTC)	1800 km ²	960 km																		
GOSAT TANSO-FTS (JAXA-NIES-MOE)	~85 km²	520 km (3-point)																	
Sentinel 5P TROPOMI (ESA-NSO)	49 km²	2600 km																		
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES)	\sim 85 km ²	632 km (5-point)															1		
MERLIN (DLR-CNES)	-	0.135 km (w)																		
MetOp Sentinel 5 (ESA-EUMETSAT)	49 km²	2600 km																		
CarbonSat (ESA)	6 km²	240 km																Carb	onSat	
			ı	1		1	1	1	1	1	1	1					1	1		
				Net			0==	untles -			Mias:-				Dles:	ام م				
				NOT	operational		Ope	rationa	I		MISSIC	n exte	ension		Plann	eu				

Requirements for quantification of sources & sinks

	Self-con-contractive	Spatial	Accuracy									
Objective	Temporal scale	scale (N-S) km x (W-E) km	Goal	Breakt hrough	Threshold	Unit	Comment					
CO₂ Regional Land	Monthly Annual	500 x 500 ¹	0.2 0.05	0.5 0.1	1 0.25	gC m ⁻² day ⁻¹	Corresponds to 5-14 MtCO ₂ Corresponds to 17-33 MtCO ₂					
CO ₂ Regional Ocean	Monthly Annual	1000 x 2000	0.005	0.01 0.01	0.03 0.03	gC m ⁻² day ⁻¹	Corresponds to 1.1-2.2 MtCO ₂ Corresponds to 13-27 MtCO ₂					
CO ₂ City scale	Instantaneous (at overpass time)	N.A.	2	4	20	MtCO ₂ yr ¹	For targets larger than 20 MtCO ₂ yr ⁻¹ (e.g. Paris, Los Angeles, Berlin), excluding wind speed error (this corresponds to an accuracy between 10% and 20%)					
CO ₂ Point source	Instantaneous (at overpass time)	N.A.	1	2	10	MtCO ₂ yr ⁻¹	For targets larger than 10 MtCO ₂ yr ¹ , excluding wind speed error. Specified accuracy values correspond to instantaneous fluxes expressed on an annual time scale					
CH₄ Regional	Monthly	500 x 500 ²	5	10	20	mgCH ₄ m ⁻² day ⁻¹	Corresponds to 38-112 ktCH ₄					
CH ₄ point source	Instantaneous (at overpass time)	N.A.	4	8	40	ktCH4 yr ⁻¹						



Requirements for future instrumentation

Future satellites should comply with the following requirements:

- **Dense sampling**: images of CO₂ and CH₄ weather and plumes
- **High spatial resolution**: capture emission hotspots and avoid clouds
- **High accuracy**: because atmospheric column gradients are small
- Global coverage: because most regions of the Earth have CO₂ and CH₄ fluxes

Measurement requirements

	XCO2 (G / B / T)	XCH4 (G / B / T)
Uncertainty	0.2 / 0.5 / 1.0 ppm	1/3/9 ppb
Horizontal resolution	100 / 500 / 1000 km (M) 0.5 / 5 / 10 km (U)	100 / 500 / 1000 km (M) 0.5 / 5 / 10 km (U)
Vertical resolution	Total column [PBL weight ≥ air mass contribution]	Total column [PBL weight ≥ air mass contribution]
Observing Cycle	1d / 1w / 1m	1d / 1w / 1m
Timeliness	1m / 6m / 1y	1m / 6m / 1y

(M): Climate monitoring application

(U): Urban monitoring application

Thank you! Merci! Спасибо!

World Meteorological Organization Organisation météorologique mondiale

