CGMS-XXVIII RUS WP-02 Roshydromet Russia Agenda Item: C.1

Future Polar Orbiting Meteorological Satellite Systems

FUTURE POLAR ORBITING METEOROLOGICAL SATELLITE SYSTEM METEOR-3M

Summary and purpose of document

This WP presents status of preparation of future Russian polar orbiting meteorological system METEOR-3M

Action

No action required

CGMS-XXVIII RUS WP-02 Roshydromet/SRC Planeta Russia Agenda Item: C.1

FUTURE POLAR ORBITING METEOROLOGICAL SATELLITE SYSTEM METEOR-3M

First polar orbiting meteorological satellite of Meteor-3M series is presently prepared for launch that is planned to IV quarter of 2000. Second satellite Meteor-3M N 2 launch is planned to 2003.

The orbital parameters of these satellites are the following:

Satellite	Inclination, deg.	Altitude, km	Period, min	Ascending node equator crossing time
Meteor-3M N1	99.6°	1024	105.3	09:15
Meteor-3M N2	99.6°	1024	105.3	10:30 (16:30)

Table 1

The payload of Meteor-3M N1 satellite (given below in table 2) includes scanning instruments of visible and IR range MR-2000M (similar to those at Meteor-3), KLIMAT-2 (modernized scanning IR radiometer KLIMAT installed on board Meteor-3). For imaging and sounding missions Meteor-3M N 1 will carry the microwave (MW) scanning radiometer MIVZA (5 channels in the range 18-90 GHz). Sounding mission will be supported with MW radiometer MTVZA (20 channels in the range of 18.7-183.36 GHz). This instrument will provide data for atmospheric temperature and humidity soundings as well as for oceanographic researches such as microwave diagnostics of the active ocean layer processes.

CGMS-XXVIII RUS WP-02 Roshydromet Russia Agenda Item: C.1

INSTRUMENTS PAYLOAD OF METEOR-3M N 1 SATELLITE

Instrument	Application	Spectral Band	Swathwidth,	Resolution,
			km	km
MR-2000M	Cloud cover mapping	0.5 - 0.8 µm	3100	0.7 * 1.4
KLIMAT-2	Cloud cover mapping,	$0.65 - 1.0 \mu m$	3000	3 * 3
	SST	10.5 - 12.5 µm		
MIVZA	Total humidity of the	20.0 35.0 94.0	1500	80 - 40
	atmosphere	GHz		
		(5 channels)		
MTVZA	Atmospheric	18.7; 22.2; 33.0;	2600	75 - 15
	temperature and	36.5; 42.0; 48.0;		
	humidity profiles	52.3-56.0;		
		91.65; 183.3		
		GHz		
		(20 channels)		
MSU-E	Multispectral images of	$0.5-0.6\ \mu m$	45	45 m
	high spatial resolution	0.6 – 0.7 µm		
		0.8 - 0.9 μm		
SAGE III	Profiles of aerosols	0.29 - 1.55 μm		1 - 2
	ozone, NO ₂ , etc.	(9 channels)		(vertical)
SFM-2	0 ₃ vertical distribution	ultraviolet		
KGI-4	Space environmental	Protons,		
	monitoring	electrons, Alpha		
		particles, ions		
		fluxes		
MSGI-5	Space environmental	Geo-active		
	monitoring	irradiances		

Table 2

The updated summary of payload of Meteor-3M N1 and M2 is given in Table 3. New sensors for imaging and sounding mission are planned to install on board of Meteor-3M N2. Those are: - multichannel scanning radiometer MSR (4 channels in visible and IR, similar to channels 1,2,4,5 of AVHRR, spatial resolution is close to 1 km).

- advanced IR atmospheric sounder IRFS based on Fourier transform spectrometer (spectral range of $2 - 4.5 \,\mu\text{m}$ and $5.0 - 16 \,\mu\text{m}$; spectral resolution is equal or better than 0.5 cm⁻¹. The IRFS primary mission is to provide data on temperature and humidity profiles and to meet WMO requirements on vertical resolution and accuracy of sounding in the troposphere.

The SAGE-III (USA, NASA) sensor is planned to install on board of Meteor-3M N1 satellite (in frame of the agreement between NASA and Rosaviakosmos).

CGMS-XXVIII RUS WP-02 Roshydromet Russia Agenda Item: C.1

Both satellites of Meteor-3M series will allow standard 1.7 GHz downlink channel. HRPT mode is foreseen on Meteor-3M N2.

METEOR-3M SATELLITES PAYLOAD COMPOSITION SUMMARY

Instruments mission and name	Meteor-3M N 1	Meteor-3M N 2	
Imaging mission	MR 2000M	MSR^{**}	
Multispectral scanning systems	KLIMAT-2	MZOAS ^{**}	
	MIVZA		
	MSU-E		
Sounding mission	MTVZA [*]	MTVZA	
Advanced multispectral sounders		IRFS^*	
Heliogeophysical mission	KGI-4	KGI-4	
SEM	MSGI-5	MSGI-5	
Optional mission	SAGE III (USA)	TBD	
Trace gases monitoring	SFM-2		

Table 3

* Pre operational mission

** Pre operational mission is performed in case of successful ground tests