

Status report on the current and future satellite systems by JAXA

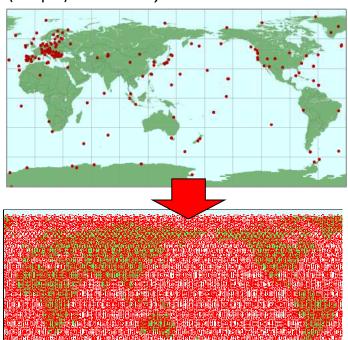
Presented to CGMS-42 plenary session, agenda item [D.2]

Overview - Planning of JAXA satellite systems

CURRENT R&D SATELLITES

- GPM/DPR was successfully launched from Tanegashima Space Center on Feb. 27, and Initial calibration and check out of the DPR is ongoing.
- TRMM/PR is still working well. 15th anniversary symposium was held in Tokyo in November, 2012.
- JAXA currently operates GOSAT, Ibuki and GCOM-W1, Shizuku
- The GOSAT data products are distributed through the GOSAT User Interface Gateway (GUIG), a website for GOSAT data distribution.
- ➤ The AMSR2 products are available at the GCOM-W1 Data Providing Service website.

Coordination Group for Meteorological Satellites


Agency, version, Date 2014 Slide: 3

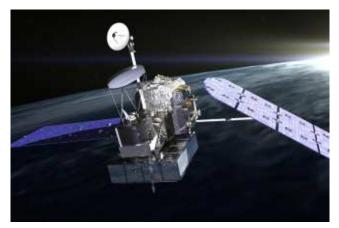
GOSAT, Ibuki

GOSAT enables global (with 56,000 points) and frequent (at every 3 days) monitoring CO2 and CH4 column density. (Launched in Jan 2009)

Current Ground-based Observation Points (320pts) *Provided by WMO WDCGG*

Increase of Observation Points using GCSAT (56,000pts)

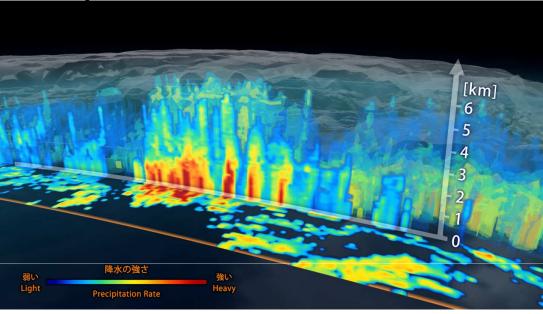
AMSR2 onboard GCOM-W1 "SHIZUKU"



- Successor of AMSR-E on Aqua and AMSR on ADEOS-II.
- Deployable main reflector system with 2.0m diameter (1.6m for AMSR-E).
- Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.
- Two-point external calibration with improved HTS (hot-load).
- Add a redundant momentum wheel to increase reliability.

GCOM-W1/AMSR2 characteristics						
Scan and rate	Conical scan at 40 rpm					
Antenna	Offset parabola with 2.0m dia.					
Swath width	1450km					
Incidence angle	Nominal 55 degrees					
Digitization	12bits					
Dynamic range	2.7-340K					
Polarization	Vertical and horizontal					

AMSR2 Channel Set								
Center Freq. [GHz]	Band width [MHz]	Pol.	Beam width [deg] (Ground res. [km])	Sampling interval [km]				
6.925/ 7.3	350		1.8 (35 x 62)					
10.65	100	V	1.2 (24 x 42)	10				
18.7	200	and	0.65 (14 x 22)	10				
23.8	400	Н	0.75 (15 x 26)					
36.5	1000		0.35 (7 x 12)					
89.0	3000		0.15 (3 x 5)	5				



GPM Core Observatory on orbit (Image Credit: NASA)

GPM Launch Seen From the Tanegashima Space Center (Image Credit: NASA/Bill Ingalls)

Coordination Group for Meteorological Satellites GPM/DPR

First light of GPM/DPR ((Image Credit: NASA/JAXA)

- GPM/DPR was successfully launched from Tanegashima Space Center on Feb. 27.
- Initial calibration and check out of DPR is ongoing.
- First light of GPM/DPR have released.

FUTURE R&D SATELLITES

- The developments of ALOS-2, EarthCARE/CPR and GCOM-C are under way.
- ALOS-2 will be launched in May 24, 2014. While EarthCARE and GCOM-C will be launched in JFY2016.
- GOSAT-2 project was officially initiated in this April as a GOSAT, Ibuki followon. The target launch date is in JFY2017.

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*

ALOS-2 Specification

ALOS-2: SAR Satellite

- August, 2009: Project Team was established
- December 2009: Preliminary Design Phase
- October 2010: Critical Design
 Phase
- ✓ Planned to be launch on May 24th 2014

•			Sun-Synchronous Sub-Recurrent				
'bit			Altitude: Approx. 630km				
			LST: 12:00 in descending orbit				
esign Life			5 years				
ıunch	Та	rget	May 24 th , 2014				
lunch	Ro	ocket	H-2A				
atellite	M	ass	Approx. 2 ton				
itemite	Solar Paddle		Two-wings type panel				
Mission Da	Mission Data Transmission		Direct / via. Data Relay Satellite				
Mission Sei	Mission Sensor		Synthetic Aperture Radar (SAR)				
Frequency			L-band (1.2GHz)				
	Fine vation Basic Wide		Resolution: 1-3 m, Width: 25 km				
Major Observation Mode			Resolution: 3 / 6 / 10 m Width: 50 / 50 / 70 km				
			Resolution: 100 m, Width: 350 km				
Mission Objectives			Crustal change, volcano monitoring, surface deformation				
			Sea ice, river, forest and agriculture.				

ALOS-2 Satellite

Press Conference on March 28, 2014

EarthCARE/CPR

Climate monitoring of earth radiation, cloud and aerosol

Cooperation between ESA and Japan (JAXA/NICT)

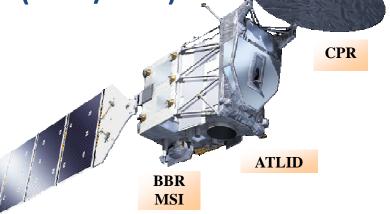
Mission

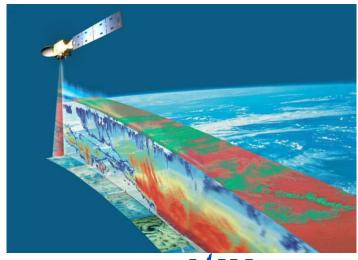
- Vertical profile of clouds, aerosol
- Interaction between clouds and aerosol
- Cloud stability and precipitation

Orbit

- Sun synchronous
- Local Sun Time at Descending Node 14:00
- Altitude 400km

Instrument


- CPR (Cloud Profile Radar)
- ATLID (Atmospheric LIDAR)
- MSI (Multi-Spectral Imager)
- BBR (Broad Band Radiometer)


Task sharing

- JAXA/NICT (CPR)
- ESA (ATLID, MSI, BBR, Spacecraft)

Launch target

JFY2016

GCOM-C and SGLI

- Improvement of land, coastal, and aerosol observations.
 - fine (250m) spatial resolution
 - polarization/along-track slant view

GCOM-C SGL	I characteristics (Current baseline	e)				
Orbit	Sun-synchronous (descending local time: 10:30)					
	Altitude: 798km, Inclination: 98.6d	eg				
Launch Date	Jan. 2014 (HII-A)					
Mission Life	5 years (3 satellites; total 13 years	s)				
Scan	Push-broom electric scan (VNR: Wisk-broom mechanical scan (IRS	,				
Scan width	1150km cross track (VNR: VN & F 1400km cross track (IRS: SW & T					
Digitalization	12bit	Multi-angle				
Polarization	3 polarization angles for P	obs. for				
Along track	Nadir for VN, SW and T, 674nm and					
direction	+45 deg and -45 deg for P 869nm					
On-board calibration	VN: Solar diffuser, Internal lamp (LED, halogen), Lunar by pitch maneuvers (~once/month), and dark current by masked pixels and nighttime obs. SW: Solar diffuser, Internal lamp, Lunar, and dark current by deep space window					
Coordination Black body and dark current by deep						
Meteorologica Proceedings						
	All: Electric calibration					

shortwave & thermal InfraRed (T) Scanner (IRS)

GLobal Imager

Polarization (alongtrack slant) radiometer

(Ísible & Near infrared) push-broom Radiometer

250m over land or coastal area, and 1km over offshore

SGLI channe										
		λ	$\Delta\lambda$	L_{std}	L _{max}	Si at Lstd	IFOV			
	СН	VN, P, S Τ: μ		W/m²	N, P: ²/sr/μm (elvin	VN, P, SW: - Τ: ΝΕΔΤ	m ⁄			
	VN1	380	10	60	210	250	250			
	VN2	412	10	75	250	400	250			
	VN3	443	10	64	400	300	250			
	VN4	490	10	53	120	400	250			
	VN5	530	20	41	350	250	250			
	VN6	565	20	33	90	400	250			
	VN7	673.5	20	23	62	400	250			
	VN8	673.5	20	25	210	250	250			
	VN9	763	12	40	350	1200(@1km)	250			
١	√N10	868.5	20	8	30	400	250			
١	VN11	868.5	20	30	300	200	250			
	P1	673.5	20	25	250	250	1000			
	P2	868.5	20	30	300	250	1000			
	SW1	1050	20	57	248	500	1000			
_	SW2	1380	20	8	103	150	1000			
	SW3	1630	200	3	50	57	250			
	SW4	2210	50	1.9	20	211	1000			
	T1	10.8	0.7	300	340	0.2	500/250			
	T2	12.0	0.7	300	340	0.2	500/250			
	250m made massibility									

Agency, version, Date 2014

GOSAT-2

GOSAT-2 monitor CO2, CH4 and CO column density. The satellite will be launched in JFY2017.

Specifications of FTS-2

	Band1	Band2	Band3	Band4	Band5
Spectral coverage (um)	0.754- 0.772	1.56-1.69	1.92-2.38	5.6-8.4	8.4- 14.3
Targeted gases	02	CO2, CH4	CO2, H2O, CO	CH4	CO2
Polarization observation	Yes	Yes	Yes	No	No
Sampling resolution (cm ⁻¹)	0.2				
IFOV (mrad)	15.8				

Specifications of CAI-2

		Forward viewing				Backward viewing				
	Band1	Band2	Band3	Band4	Band5	Band6	Band7	Band8	Band9	Band10
Spectral coverage (nm)	333- 433- 664-684 859- 353 453 879				1585- 1675	370- 390	540- 560	664-684	859- 879	1585- 1675
Target		Cloud and Aerosol								
Spatial resolution (m)	500 1000				500			1000		
Tilt angle (deg)	+20				-20					
Swath (km)	1000									

Thank you for your attention

