

Optimal distribution of polar-orbiting sounding missions

John Eyre

Met Office, UK

© Crown copyright 2007

CGMS-40; Lugano, Switzerland;5-9 Nov 2012

Optimal distribution of polar-orbiting sounding missions

- Background
- Previous studies in Europe
- A new theoretical study:
 - the impact of temporal spacing of observations on analysis accuracy
- Conclusions

Acknowledgements

Enza Di Tomaso (ECMWF) Niels Bormann (ECMWF)

Peter Weston (Met Office)

approved by WMO-EC, 2009

Previous studies in Europe

Assimilation of ATOVS radiances at ECMWF. E. Di Tomaso and N.Bormann. EUMETSAT/ECMWF Fellowship Programme Res. Rep. 22

Also presented in CGMS-38 EUM-WP-41

Orbits of current satellites

Thickest lines denote GPCP calibrator.

Image by Eric Nelkin (SSAI), 19 April 2010, NASA/Goddard Space Flight Center, Greenbelt, MD. © Crown copyright 2007

"NOAA-19 experiment" * MetOp-A * NOAA-18 * NOAA-19

"NOAA-15 experiment" * MetOp-A * NOAA-18 * NOAA-15

Sample coverage from a 6-hour period around 00Z

Forecast impact of ATOVS

" Averaged over extra-Tropics, impact of NOAA-15 experiment versus NOAA-19 experiment is neutral to slightly positive "

Note: AIRS and IASI not assimilated in these experiments

20-Apr-2009 to 4-App-2009 form99 to 107 samples. Confidence range 90%. Verfield against own-analysis.

New theoretical study: the impact of temporal spacing of observations on analysis accuracy

Outline of theoretical study

Met Office

- Very simple DA system
 - one variable in space
 - observations distributed in time
- Observations inserted in 12-hour cycle
 - to simulate 1, 2, 3 or 4 satellites
 - with temporal spacing to simulate 3 orbital planes
- Results found to be very sensitive to assumed rates of forecast error growth
 - different rates of doubling time for forecast error variance used:
 - 12 hours, 6 hours, 3 hours
- See CGMS-40 WMO-WP-19 for theory and details

The experiments:

different numbers of observations and

different observation spacings

relative observation time (hours) →			0	1	2	3	4	5	6	7	8	9	10	11
experiment number	number of observations	constellation code												
1	1	[1,0,0]	1											
2	2	[2,0,0]	2											
3	2	[1,1,0]	1				1							
4	3	[3,0,0]	3											
5	3	[2,1,0]	2				1							
6	3	[1,2,0]	1				2							
7	3	[1,1,1]	1				1				1			
8	4	[2,2,0]	2				2							
9 © Crown copyright 2	4	[1,2,1]	1				2				1			

Average analysis error variance: forecast error variance doubling time = 12 hours

For 3-satellite constellations: percentage increases in analysis error variance relative to [1,1,1]

For 4-satellite constellations: percentage increases in analysis error: [2,2,0] relative to [1,2,1]

Increase in mean analysis error for suboptimal configurations 3 hour forecast 13.7 14 error doubling time 6 hour forecast 12 error doubling time 12 hour forecast error doubling time 10 Percentage 8 2.9 0.7

[2,2,0] Constellation code

Relevance of theoretical results to real world?

Theoretical study – Conclusions

Met Office

- Mean analysis error variance is most relevant metric when assessing impact of temporal spacing of observations on global NWP performance
- Dependence of mean analysis error variance on observation spacing is very sensitive to assumed rate of forecast error growth:
 - for a 12-hour doubling time of forecast error variance, dependence on observation spacing is significant but small,
 - for a 3-hour doubling time reaching ~25% increase in variance for plausible 3-satellite constellations, and ~8% increase for 4-satellite constellations.
- These simple experiments are relevant to real NWP systems, particularly for rapidly-developing storms over mid-latitude oceans.
- Results support assumptions guiding the WMO Vision: that polar-orbiting satellites should be equally space in time, as far as is practicable.

Overall conclusions

Overall conclusions

- OSE and theoretical study results support guidance that observations should be roughly equally spaced in time
- Impact of observation spacing on NWP is greatest when forecast error growth rates are high, as likely in rapidlydeveloping storms
- → At least one set of IR+MW sounding instruments in an early morning orbit is highly desirable
- More important to optimise the temporal spacing than to hit specific absolute LECTs

Thank you! Questions?

The experiments:

mean analysis accuracies and error variances

Met Office

	experiment number	1	2	3	4	5	6	7	8	9
	number of observations	1	2	2	3	3	3	3	4	4
t	constellation code	[1,0,0]	[2,0,0]	[1,1,0]	[3,0,0]	[2,1,0]	[1,2,0]	[1,1,1]	[2,2,0]	[1,2,1]
	mean accuracy	1.485	2.970	2.970	4.454	4.454	4.454	4.454	5.939	5.939
12 h	mean error variance	0.701	0.350	0.341	0.234	0.228	0.228	0.225	0.171	0.169
	% difference	-	+2.7	0	+3.6	+1.3	+1.1	0	+0.7	0
	mean accuracy	0.764	1.528	1.528	2.291	2.291	2.291	2.291	3.055	3.055
6 h	mean error variance	1.531	0.766	0.690	0.510	0.468	0.462	0.444	0.345	0.336
	% difference	-	+10.9	0	+15.0	+5.5	+4.1	0	+2.9	0
	mean accuracy	0.404	0.808	0.808	1.212	1.212	1.212	1.212	1.616	1.616
3 h	mean error variance	4.509	2.254	1.546	1.503	1.108	1.018	0.882	0.773	0.680
	% difference	-	+45.8	0	+70.5	+25.7	+15.5	0	+13.7	0

