

STATUS OF HIMAWARI-8/9 AND THEIR FOLLOW-ON SATELLITE PROGRAM

Presented to CGMS-50 PLENALY, agenda item 2 (JMA-WP-01)

Japan Meteorological Agency

Himawari-8/9

Himawari-8 began operation on 7 July 2015, replacing the previous MTSAT-2 operational satellite

Geostationary position	Around 140.7°E						
Attitude control	3-axis attitude-controlled geostationary satellite						
	1) Raw observation data transmission Ka-band, 18.1 - 18.4 GHz (downlink)						
Communication	2) DCS (Data collection System) International channel 402.0 - 402.1 MHz (uplink) Domestic channel 402.1 - 402.4 MHz (uplink) Transmission to ground segments Ka-band, 18.1 - 18.4 GHz (downlink)						
	3) Telemetry and command Ku-band, 12.2 - 12.75 GHz (downlink) 13.75 - 14.5 GHz (uplink)						

JMA is now planning the switch over from Himawari-8 to -9 around December 2022. Their parallel observation and data distribution are also under consideration.

HimawariRequest

 HimawariRequest was started from January 2018 in cooperation with Bureau of Meteorology (BoM), Australia.

International service for NMHSs in Himawari-8/9 coverage area to request Target

Area observation(1,000 x 1,000 km area every 2.5 minutes).

- JMA expects this service to support disaster risk reduction activities in the Asia Oceania region.
- Status as of 25 May 2022
 - ➤ Registration: 22 NMHSs
 - ▶ 144 requests for TC, volcanic eruption, wildfires, etc.

HimawariRequest from BoM on 13-19 Mar. 2019

Himawari Follow-on Program

- JFY2018: JMA has started to consider the next GEO satellite (Himawari-10) program.
 - "By JFY2023 Japan will start manufacturing the Geostationary Meteorological Satellite that will be the successor to Himawari-8/9, aiming to put it into operation in around JFY2029" Japan's "Basic Plan on Space Policy" (June 2020)
 - > JMA will pursue seamless GEO satellite system by considering CGMS baseline and WMO Vision for WIGOS in 2040 to contribute the establishment of Geo-Ring observation.
- JFY2019: Worldwide Technology Trends Survey on Future Satellites/Instruments
- JFY2020: OSSE of hyperspectral IR sounder on JMA NWP systems was implemented.
- JFY2021: Internal, domestic and international user requirements will be summarized.
- JFY2022: RFI and RFP
- JFY2023: Start of manufacturing of H-10
- JFY2028: Launch of Himawari-10
- JFY2029: Start of operation of Himawari-10

JFY (Apr – Mar(Next))	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Himawari-8 Himawari-9	Manufacturing Launch Operational In-orbit standby								У		In-o O _l	rbit pera									
follow-on (under considering)															Ma	nufa	ıctur	ing	Lo	unc	h

WMO Vision for WIGOS in 2040 for GEO

	Application	Satellite/Instrument
VIS/IR Imager w/ rapid repeat cycles	Cloud amount/type/top height/temperature, wind, sea/land surface temperature, precipitation, aerosols, snow cover, vegetation cover, albedo, atmospheric stability, fires, volcanic ash, sand/dust storm, convective initiation	 NOAA: GOES-16,17/ABI JMA: Himawari-8,9/AHI KMA: GK-2A/AMI CMA: FY-4A,4B/AGRI EUMETSAT: MTG-I1/FCI (2022)
Hyperspectral IR Sounder	Atmospheric temperature/humidity, wind, rapidly evolving mesoscale features, sea/land surface temperature, cloud amount/top height/temperature, atmospheric composition	 NOAA: N/A JMA: N/A KMA: N/A CMA: FY-4A,4B/GIIRS EUMETSAT: MTG-S1/IRS (2024)
Lightning Mapper	Lightning, location of intense convection, life cycle of convective systems	 NOAA: GOES-16,17/GLM JMA: N/A KMA: N/A CMA: FY-4A/LMI EUMETSAT: MTG-I1/LI (2022)
UV/VNIR Sounder	Ozone, trace gases, aerosol, humidity, cloud top height	 NASA: TEMPO (2022) JMA: N/A KMA: GK-2B/GEMS CMA: N/A EUMETSAT: MTG-S1/UVN (2024)

JMA's 10-Year Strategy Toward

1. Technology Developments

- Application of latest sci & tech;
 - ✓ Advanced satellites, remote sensing, big data
 - ✓ NWP and other prediction tech.
 - ✓ Collaboration etc.
- Improvement of forecasts
 - ✓ Nowcast up to 1 hour
 - ✓ 12-hour forecast of localized heavy rain (stationary linear mesoscale convective systems)
 - 3-day typhoon forecast etc.

2. Promotion of Effective Utilization of Info./Data

- Build environment for better usage
 - ✓ Larger data flow
 - ✓ Easier access
- Raise capacity for the utilization
 - ✓ Literacy about disaster, safety, etc.
 - ✓ Application technology/skill

Met.
Services
for Better
Society

Synergy

3. Contribution to Disaster Resiliency

- > JMA to Contribute to "Disaster Awareness Society" and to play the leading role in met. services
 - ✓ Improved impact-based warnings on the basis of advanced sci & tech
 - ✓ Collaborate with stake-holders to build local decision making capacity
 - ✓ Raise individual disaster awareness and response capacity

We need to observe 3-D humidity information to improve these forecasts

Toward Better Prediction for Stationary Linear Mesoscale Convective Systems

- ➤ High-impact weather events in recent years have resulted in a demand for improving JMA's weather forecasts/warnings
- Torrential rain events during East Asian rainy season in 2020 and 2021 further enhanced this demand
 - ✓ Mainly caused by stationary linear mesoscale convective systems
- JMA established WG with external experts and internal TF to improve the prediction system to issue warnings with extended lead time by
 - ✓ Introducing advanced observation technologies such as GNSS receivers on vessels (short-term subject) and geostationary IR sounders (long-term subject)
 - ✓ Improving NWP models
- Enhanced collaboration with academia.

Coordination Group for Meteorological Satellites Houses submerged by the Kuma River on 4 July 2020 (MLIT)

3-h accumulated radar/rain-gauge obs. (mm) at 0500 on 4th July 2020

Concept of Himawari-10

- Mission Instrument(s)
 - > AHI-class or FCI-class VIS/IR imager (with optional improved capabilities)
 - New instrument (under consideration)
 - ✓ Hyperspectral IR sounder
- Orbital location
 - Around 140 degrees East
- Design lifetime
 - 15 years (10-year in-orbit operation and 5-year in-orbit storage)
- Communication subsystems
 - Ka-band (18 GHz) for mission raw data downlink
 - Ku-band (12-14 GHz) for telemetry, tracking & command
 - Data Collection System (collection of in-situ meteorological data)

OSSE of GEO Hyperspectral IR Sounder

- Several experiments were implemented with Okamoto et al. (2020)
 - Operational DA configuration (incl. use of AIRS/CrIS/IASI in global model)
 - > Hypothetical IRS on GEO at 140.7 E, hourly full-disk obs w/ 30 km spatial resolution from ERA5
- Global DA (upper figure)
 - > ~140 km improvement in typhoon position for 3 -d forecast (time of landing)
- Regional DA (bottom figures)
 - Better location of the heaviest rain area which caused devastating floods

3-hour accumulated rainfall (mm), 12-h forecast valid at 0900 UTC on 2020-07-04

Coordination Group for

Thank you!!

