

CGMS-39, JAXA-WP-02 Prepared by JAXA Agenda Item: C.3 Discussed in Plenary

Update on JAXA's Future Satellite Systems

The current status of JAXA's GCOM-W1/C1, GPM/ DPR, EarthCARE/CPR and ALOS-2 is updated.

GCOM-W1 will be launched on schedule. Its official launch date will be announced soon. While GCOM-C1 launch date might be delayed.

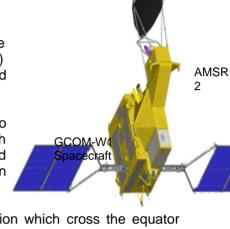
DPR FM has been tested in Tsukuba Space Center, Japan, and CEOS Precipitation Constellation International Workshop will be held in November, 2011, in Denver, US.

EarthCARE data table has been updated.

GCOM(Global Change Observation Mission)

The "Global Change Observation Mission" (GCOM) aims to construct, use, and verify systems that enable continuous global-scale observations of effective geophysical parameters for elucidating global climate change and water circulation mechanisms, GCOM will consist of two satellite series (GCOM-W and C) spanning three generations with one year overlap in orbit enables over 13 years observation in total.

GCOM-W1


Water cycle variation will be observed by the Advanced Microwave Scanning Radiometer-2 (AMSR2) onboard the GCOM-W (Water) satellite. GCOM-W will observe precipitation, water, sea surface wind speed, sea water temperature, soil moisture, snow depth and etc..

The first generation of GCOM-W (called GCOM-W1) is scheduled to be launched in late JFY2011. Its orbit will be sun-synchronous with 699.6km altitude (over the equator), 98.186 degrees inclination and 13:30 local time of descending node. Dual launch with Korean KOMPAT-3 by H-IIA vehicle is planned.

GCOM-W1 will join into the afternoon "A-Train" satellite constellation which cross the equator within a few minutes of one another at around 1:30 p.m. local time. The proposed location of GCOM-W1 in the A-Train is 259.5 seconds ahead of Aqua

Orbit alti	tude of 700 kr	n and main-ref	lector size of 2.0m	are assumed)
Center frequency [GHz]	Band width [MHz]	Polarization	Beam width [deg.] (Ground resolution [km])	Sampling interval [km]
6.925 / 7.3	350	V and H	1.8 (35 x 62)	10
10.65	100		1.2 (24 x 42)	
18.7	200		0.65 (14 x 22)	
23.8	400		0.75 (15 x 26)	
36.5	1000		0.35 (7 x 12)	
89.0	3000		0.15 (3 x 5)	5

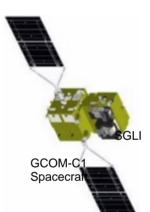
Frequency Channels and Resolutions of AMSR2

	indard Products	
Product	Range	Comments
Brightness temperatures		
Brightness temperatures	2.7-340K	Global, 6 frequency with dual polarizations
Geophysical parameters		
Integrated water vapour	0 - 70kg/m ²	Over global ocean [*] , columnar integrated value
Integrated cloud liquid water	0 - 1.0kg/m ²	Over global ocean [*] , columnar integrated value
Precipitation	0 - 20mm/h	Global (except over ice and snow), surface rain rate
Sea surface temperature	-2 - 35°C	Global ocean [*]
Sea surface wind speed	0 - 30m/s	Global ocean [*]
Sea ice concentration	0 - 100%	High latitude ocean areas
Snow depth	0 - 100cm	Land surface (except dense forest regions)
Soil moisture	0 - 40%	Land surface (except ice sheet and dense forest regions)

GCOM-W1 Standard Products

Except sea ice and precipitating areas

GCOM-C1


Climate change observation will be performed by the Second-generation Global Imager (SGLI), a multi-wavelength optical radiometer, onboard the GCOM-C (Climate) satellite on clouds, aerosol, seawater color (marine orgasms), vegetation, snow and ice.

The first generation of GCOM-C (called GCOM-C1) is scheduled to be launched in or later than JFY2014. Its orbit will be sun-synchronous with 798km altitude (over the equator), 98.6 degrees inclination and 10:30 local time of descending node.

			L _{std}	L	SNR at Lstd	IFOV
СН	VN, P, S T:		W/m ²	N, P: ²/sr/ m Kelvin	VN, P, SW: - T: NE T	m
VN1	380	10	60	210	250	250
VN2	412	10	75	250	400	250
VN3	443	10	64	400	300	250
VN4	490	10	53	120	400	250
VN5	530	20	41	350	250	250
VN6	565	20	33	90	400	250
VN7	673.5	20	23	62	400	250
VN8	673.5	20	25	210	250	250
VN9	763	12	40	350	400	1000
VN10	868.5	20	8	30	400	250
VN11	868.5	20	30	300	200	250
P1	673.5	20	25	250	250	1000
P2	868.5	20	30	300	250	1000
SW1	1050	20	57	248	500	1000
SW2	1380	20	8	103	150	1000
SW3	1630	200	3	50	57	250
SW4	2210	50	1.9	20	211(TBD)	1000
T1	10.8	0.74	300	340	0.2	500
T2	12.0	0.74	300	340	0.2	500

SGLI Channel Specifications

^{*1}Polarization channels (P1 and P2) should have capability to observe at three polarization direction (0,60,120 deg.) and NADIR / Tilt view at +-45 deg.

		GCOM-C1 Standard products		
Area	Group	Product	Day/night	Grid size
Com mon	Radiance	Top-Of-Atmosphere radiance (including system geometric correction)	<i>TIR and land 2.2mm:</i> Both <i>Other VNR,SWI:</i> Daytime (+special operation)	VNR,SWI Land/coast: 250m, offshore: 1km, polarimetory:1km TIR Land/coast: 500m, offshore: 1km
Lan	Surface reflectance	Precise geometric correction	Both	250m
d		Atmospheric corrected reflectance (incl. cloud detection)	Daytime	250m
	Vegetation and	Vegetation index		250m
	carbon cycle	Above-ground biomass		1km
		Vegetation roughness index		1km
		Shadow index		250m, 1km
		fAPAR		250m
_		Leaf area index		250m
	Temperature	Surface temperature	Both	500m
Atm	Cloud	Cloud flag/Classification	Both	1km
osp here		Classified cloud fraction	Daytime	1km (scene),
nere	Cloud top temp/height Both			0.1deg (global)
		Water cloud OT/effective radius	Daytime	
-		Ice cloud optical thickness	_	
	Aerosol	Aerosol over the ocean	_	
		Land aerosol by near ultra violet	_	
	<u> </u>	Aerosol by Polarization		
Oce	Ocean color	Normalized water leaving radiance (incl. cloud detection)	Daytime	250m (coast)
an			-	1km (offshore)
		Atmospheric correction parameter	_	4~9km (global)
-	la suete a	Photosynthetically available radiation	_	
	In-water	Chlorophyll-a concentration	_	
		Suspended solid concentration	_	
-	T	Colored dissolved organic matter	Deth	500 ()
	Temperature	Sea surface temperature	Both	500m (coast)
				1km (offshore)
Cruc	Aroo/ distribution	Show and los asysted area	Doutimo	4~9km (global)
Cryo sph	Area/ distribution	Snow and Ice covered area (incl. cloud detection)	Daytime	250m (scene)
ere			-	1km (global)
	Surface properties	Okhotsk sea-ice distribution	_	250m
	Surface properties	Snow and ice surface Temperature	-	500m (scene)
		Snow grain size of shallow layer		1km (global)

Access to GCOM data

To R&D and operational organizations, JAXA can provide GCOM data which includes standard products, processed data and related information which meets users' needs to user organizations, via the JAXA on-line system (free of charge), optionally via a dedicated communication line or media upon users' needs (minimal cost charged) under the cooperative agreements with JAXA after commissioning (launch + 3 months) for Calibration and Validation, keeping the data latency, if required (GCOM-W1 global data: observation time + 150min.).

To general researchers, JAXA will provide GCOM standard product via the JAXA on-line system (free of charge) after Calibration and Validation phase in about one year after the launch. Simple

registration and consent to data use conditions are required on the system. Before providing GCOM standard products, AMSR and AMSR-E standard products have been available on the system since August, 2011 (https://gcom-w1.jaxa.jp/).

Direct reception; receiving the real-time observation data from the GCOM satellites at the users' ground station can be available, subject to conditions defined by JAXA in an individual agreement. Actual cost due to the direct reception is charged on users, in principle. (e.g. cost for provision and maintenance of processing software)

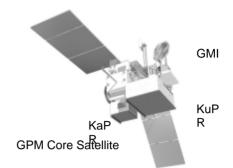
Secondary distribution is basically prohibited, but R&D user agencies can distribute GCOM data to third parties, provided that they nominate the third parties to JAXA and make them comply with the 'rights and use conditions' specified in the GCOM data policy.

For commercial purpose, JAXA makes license agreements with commercial purpose users and imposes royalties on them.

Japanese Fiscal Year	FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014
Milestone	-2	GCOM-W1 P		DM-C1 Project :	start		coM-W1 unch		GCOM-C1 Launch
GCOM-W1	Phase-A	sor Phase-B	PDR Phase-	▲ cDR C	Phase-D				
		▲ sD	R se-A	Phase-B	PDR	ase-C	▲ CDR	Phase-D	

Schedule

(*) Japanese Fiscal Year starts in April and ends in March.


References

http://www.jaxa.jp/projects/sat/gcom/index_e.html http://suzaku.eorc.jaxa.jp/GCOM/index.html

GPM (Global Precipitation Mission) **and DPR** (Dual-frequency Precipitation Radar)

GPM is a satellite program to measure the global distribution of precipitation accurately in a sufficient frequency so that the information provided by this program can drastically improve weather predictions, climate modelling, and understanding of water cycles. Its feasibility has been studied at Goddard Space Flight Center of National Aeronautics and Space Administration (NASA) and JAXA. The accurate measurement of precipitation will be achieved by the Dual-frequency Precipitation Radar (DPR) installed on the GPM core satellite. DPR on the GPM core satellite is being developed by JAXA and National Institute of Information and Communications Technology (NICT).

NASA and JAXA signed implementation phase MOU in July 2009. DPR Critical Design Review (CDR) completed in October 2009. While, NASA Mission CDR completed in December 2009. All DPR development tests completed successfully, and the DPR system manufactured and has currently been tested at JAXA Tsukuba Space Center.

The GPM Core Satellite carrying DPR (KuPR and KaPR) and GPM Microwave Imager (GMI) is scheduled to be launched in July 2013. Its orbit will be non-sun-synchronous with 407km altitude and 65 degrees inclination.

	Major characteristics of DPR				
Name	KuPR	KaPR			
radar type	active phase	d array radar			
antenna	slotted waveg	guide antenna			
frequency	Ku-band	Ka-band			
	13.60 GHz	35.55 GHz			
peak transmit power	> 1000 W	> 140 W			
swath	245 km	125 km			
horizontal resolution	5 km				
range resolution	250 m 250m/500r				
observation altitude	surface	~ 19 km			
observation rain rate	0.5 mm/h ~	0.2 mm/h ~			
size	2.4 m x 2.4 m x 0.6 m	1.44 m x 1.07 m x 0.7 m			
	< 470 kg	< 336 kg			

Major characteristics of DPR

Data Products Updates

There are three kinds of products that are Standard product, Research product and Near-real time product. Research products are the ones in research phases; however, those have possibilities to be Standard products. Several candidates for research product are considered at JAXA GPM project, and will be defined later. Near-real time products will be generated using estimated orbital information for prompt data release and distributed to users who need GPM data as soon as possible for their operational purposes.

Current plan of JAXA GPM products is updated. Other than JAXA products listed up in the following Table, some of the GPM standard products processed at NASA will be distributed from JAXA. GPM standard products will be authorized between the U.S. and Japan Joint Precipitation Measuring Mission (PMM) Science Team.

JAXA is responsible for the GPM/DPR algorithm development for engineering values (Level 1) and physical products (e.g. precipitation estimation) (Level 2 and 3) and the quality control of the

products as the sensor provider. Furthermore, JAXA is planning to generate the DPR/GMI combined algorithms, which will be based on DPR maximizing the use of DPR information, and Global Precipitation Map product, which will merge multiple satellite information and mapped data with high temporal resolution, considering data needs in some operational areas such as weather forecasts and flood warning. Higher level of DPR and DPR/GMI combined algorithms are jointly developed by Japan and US joint algorithm team.

To meet the GPM objectives, retrieval algorithms will require global applicability, robustness, and long-term stability. Algorithms that can be extended and applied for similar instruments (e.g., PR, and microwave radiometers on board the other satellites) and historical data records are preferable for integrated retrieval. Computationally efficient, fast-processing algorithms are important for the operational applications of the products. Level 2 of the Dual-frequency Precipitation product and the DPR/GMI combined product and Level 3 Global Precipitation Map product, which are denoted in light grey in the table below, are also required to process in near real time. Each near-real-time algorithm will be developed based on the standard algorithm. All near-real-time products have to be produced and distributed within 60 minutes after acquisition of observation data.

Level	Algorithm	Product	Major physical parameter	Unit	Coverage
1	KuPR algorithm	KuPR product	Received power profile	Orbit	245km (swath)
	KaPR algorithm	KaPR product	Received power profile	Orbit	125km (swath)
2	DPR algorithm (Japan-US joint)	KuPR product	Radar reflectivity profile, normalized radar surface cross section (⁰), rain type, bright-band height, attenuation corrected radar reflectivity profile, rain rate profile, etc.	Orbit	245km (swath)
		KaPR product	Radar reflectivity profile, normalized radar surface cross section (⁰), rain type, bright-band height, attenuation corrected radar reflectivity profile, rain rate profile, etc.	Orbit	125km (swath)
		Dual-frequency precipitation product	Rain rate profile, drop size distribution, precipitation status (rain/snow), attenuation profile, etc.	Orbit	245km (swath)
	DPR/GMI combined algorithm (Japan- US joint)	DPR/GMI combined product	rain rate profile, surface rain rate, etc.	Orbit	125/245kmkm (swath)
3	DPR algorithm (Japan-US joint)	Dual-frequency precipitation product	Mean rainfall, observation number, rain pixel number, mean bright-band height, storm height, etc.	Daily/ Monthly	Global
	DPR/GMI combined algorithm (Japan- US joint)	DPR/GMI combined product	Mean rainfall, observation number, rain pixel number, etc.	Monthly	Global
	Global precipitation map algorithm	Global precipitation map product	Mean rainfall, observation number, rain pixel number, etc.	1-hr/ monthly	Global (Horizontal: 0.1º grid box)

Updated Plan of JAXA GPM Products.

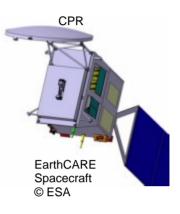
NOTE: Products denoted in light grey will also be processed and provided in near real time. Each nearreal-time algorithm will be developed based on the standard algorithm. Other than these products listed up in this table, some of the GPM standard products processed at NASA will be distributed from JAXA. GPM standard products will be authorized between the U.S. and Japan Joint PMM Science Team.

CEOS Precipitation Constellation Updates

CEOS Precipitation Constellation (PC) is proposed as one of first four virtual constellations, and JAXA and NASA is co-leading CEOS PC activities with other participating agencies.

CEOS PC holds annual meeting (International workshop) to exchange information of the individual satellite projects and specifications of instruments, and to establish annual or biennial Work Plan to implement the broad goals and specific phase objectives outlined in the PC Implementation Plan. The fourth CEOS PC International Workshop will be held in 10 November 2011 in Denver, U.S., which was originally scheduled in April 2011 in Brazil, but postponed because of the March Earthquake in Japan. At the forth workshop, CEOS PC 2011-2012 Work Plan and 2009-2011 Accomplishment will be developed. In addition, the relationship of proposed CEOS PC Portal to the proposed CEOS Water Portal will be discussed at the workshop. Results of the workshop will be uploaded to the CEOS PC web site (http://ceospc.gsfc.nasa.gov) operated by NASA.

References


http://www.jaxa.jp/projects/sat/gpm/index_e.html http://www.eorc.jaxa.jp/GPM/index_e.htm http://pmm.gsfc.nasa.gov/ http://ceospc.gsfc.nasa.gov/

EarthCARE (Earth Clouds, Aerosols and Radiation Explorer) and CPR (Cloud Profiling Radar)

EarthCARE is a joint European-Japanese mission addressing the need for a better understanding of the interactions between cloud, radiative and aerosol processes that play a role in climate regulation. Japan (JAXA and NiCT) will provide CPR to the spacecraft.

CPR is a 94 GHz Doppler Radar which has several characteristics. First point is the high sensitivity. This requirement is divided into large antenna size requirement, low noise figure of receiver requirement and high power of transmitter requirement. Second point is the Doppler capability. To materialize this function with satisfactory accuracy, large diameter of antenna with precise surface figure and high pulse repetition frequency (PRF) are required. To keep accuracy especially at boundary layer region, several other fine characteristics, such as side lobe characteristics of antenna, cross polarization characteristics and so on, are also required for CPR design.

CPR Major Specifications (Draft)

04 Olda Departer Deder
94 GHz Doppler Radar
94.05 GHz
3.3 micro second (equivalent to 500m vertical resolution)
0.095 deg
Circular
> 1.5 kW (Klystron spec.)
-0.5 ~ 20 km
500 m (100 m sample); Vertical, 500m integration; Horizontal
-35 ~ +21 dBZ
< 2.7 dB
-10 ~ +10 m/s
< 1 m/s
Variable; 6100~7500 Hz
< 0.015 degree

*; at 10 km integration and 387 km orbit height

JAXA will produce not only CPR products but also other products from the each sensor and the synergetic use of other sensors.

	Processing		Reference		Product Resolution		Release	Standard	Target
Sensor(s)	Level	Product Name	Name Primary Parameters		Horizontal	Vertical	Accuracy	Accuracy	Accuracy
			CMASK_A	Feature Mask	200m 1km 10km	0.1km	±100%	±40%	±10%
			TYPE_A	Target Mask	1km 10km	0.1km	±100%	±40%	±10%
	ATLID L2a ATLID one-sensor Products	EXTaero_A	Aerosol Extinction Coeff.			±60%	±40%	±20	
		BACKeero_A	Aerosol Backscat. Coeff.	100-	0.1km	±90%	±70%	±50%	
		LDRaero_A	Aerosol Lidar Ratio	10km	U. IKIM	±150%	±110%	±70%	
ATLID		DPOLaero_A	Aerosol Depolarization Ratio			±150%	±130%	±100%	
		CEXT_A	Cloud Extinction Coeff.	1km 10km	0.1km	±50%	±30%	±15%	
		CBACK_A	Cloud Backscat. Coeff.	1km 10km	0.1km	±90%	±70%	±50%	
		OLRA	Cloud Lidar Ratio	1km 10km	0.1km	±140%	±100%	±65%	
		CDPOL_A	Cloud Depolarization Ratio	1km 10km	0.1km	±150%	±100%	±100%	
			PBLH_A	Planetary Boundary Layer Height	1km 10km	0.1km	±500m	±300m	±100m
			MSK_CA	Cloud Mask	1km 10km	0.1km 0.5km	-		-
			TYP_CA	Cloud Particle Type	1km 10km	0.1km 0.5km	-		-
			ER_CA	Effective Radius of Liquid	1km	0.5km 0.1km 0.5km	-	root mean	_ ±2μm
CPR		CPR-ATLID Synergy	ERice CA	Effective Radius of Ice	10km 1km	0.1km	-	square of	=
+ ATLID	L2b	Cloud Products	Elace_CA	Effective readus of Ice	10km	0.5km	-	errors of one- sensor	-
ALLO			LWC_CA	LWC	1km 10km	0.1km 0.5km	-	products	±20%
			IWC_CA	IWC	1km 10km	0.1km 0.5km	-		±30%
			COT_CA	Optical Thickness	1km	-	-		-

Japanese Standard Products *Draft (1/2)

D and D in the resolution row specifies the combination of horizontal and vertical resolution. JAXA will produce both D- and D-pair resolution products. The accuracies are defined using the "product resolution" in red italic numbers. The accuracies of CPR L1b are defined by 10km integration.

Those accuracies except for CPR are assumed under the condition that sensors developed by ESA functioned as expected.

The accuracies of ATLID are based on the information before the change of specifications.

The length of a scene is defined as the length of an orbit divided equally (default : 1 scene = 1 orbit)

Japanese Standard Products *Draft (2/2	Japanese	Standard	Products	*Draft (2/2)	
--	----------	----------	----------	--------------	--

					Product F	Resolution	0.1	Charles I.	
Sensor(s)	Processing Level	Product Name	Reference Name	Primary Parameters	Horizontal	Vertical	Release Accuracy	Standard Accuracy	Target Accuracy
_				Received Echo Power			< 4.7dB	< 2.7dB	-
				Radar Reflective Factor	1	0.1km	< 4.7dB	< 2.7dB	< 2.7dB
CPR	L1b	CPR Received Echo Power & Doppler		Surface Radar Cross	0.5km	-	-	-	-
UP N	210	Products		Doppler Velocity	0.000		-	< 1m/s	< 0.2m/s
				Covariance of Pulse Pair		0.1km	-	-	-
				Spectrum Width	11	0.0	-	-	-
			IRFnogas_C	Integrated Radar Reflective Factor	1km 10km	0.1km 0.5km	-	-	-
				Integrated Doppler	1km	0.1km			
CPR	L2a	CPR Echo Product	IDV_C	Velocity	10km	0.5km	-	< 1m/s	< 0.2m/s
					1km	0.1km			
			GCF_C	Gas Correction Factor	10km	0.5km	-	-	-
					1km	0.3km			
			MSK_C	Cloud Mask	10km	0.1km	±30%	±10%	±5%
					1km	0.1km			
			TYP_C	Cloud Particle Type	10km	0.5km	±100%	±50%	±20%
				Radar Reflective Factor					
000	CPR L2a CPR one-sensor Cloud Products	DBZe	with Attenuation			< 7.6dB	< 5.7dB (+8)	< 4.5dB	
CPR			Correction						
		LWC_C	Liquid Water Content	1km	m 0.1km	-	±100%	±50%	
		IWC_C	Ice Water Content	1800		-	-	-	
		ERliquid_C	Effective Radius of Liquid			-	-	-	
			ERice_C	Effective Radius of Ice			-	-	-
			COT_C	Optical Thickness		-	-	±100%	±50%
	MSI L2a MSI one-sensor Cloud Poducts	FLGG_M	Cloud Flag including Cloud Phase	0.5km	-	±15% Ocean ±20% Land (*1)	±15%(+2)	±10% (*2)	
			COTliquid_M	Cloud Optical Thickness (Liquid)			±10% (*3)		
MSI			REF16_M	Effective Radius of Liquid (1.6um)	1			±100% (converting to LWP) (+4)	±50% (converting to LWP) (+4)
			REF22_M	Effective Radius of Liquid (2.16um)	0.5km	-	±30% (*5)		LMP) (+4)
			CTT_M	Cloud Top Temperature	1		±1K (+6)	±3K(*7)	±1.5K (+7)
			CTP_M	Pressure	1		-	-	-
			CTH_M	Height			-	-	-
			Mask_CAM	Cloud Mask	1km 10km	0.1km 0.5km	-		-
					10km	0.5km 0.1km	-		-
			Type_CAM	Cloud Particle Type	10km	0.5km	-		-
			ERliquid CAM	Effective Radius of Liquid	1km	0.1km	-		±2µm
			Ereiquio_Green	Effective readus of Eliquid	10km	0.5km	-		- apm
CPR			ERice_CAM	Effective Radius of Ice	1km	0.1km	-	root mean	-
+		CPR-ATLID-MSI			10km 1km	0.5km 0.1km	-	square of	
	L2b	Synergy Cloud Products	WCliquid_CAM	LWC	10km	0.5km	-	errors of one- sensor	±20%
MSI		Products	WCice_CAM	WC	1km 10km	0.1km 0.5km	2	products	±30%
			COT_CAM	Optical Thickness	1km 10km		-		-
			LWP_CAM	LWP	1km 10km	-	-		-
			IWP_CAM	WP	1km 10km		-		-
			SWFX_CAMB	SW Radiative Flux		-	-	25W/m2	+ 1000/
			LWFX_CAMB	LW Radiative Flux			-	20W/m2	±10W/m2
CPR ATLID MSI	L2b	Four Sensors Synergy Radiative Product	SWRH_CAMB	SW Radiative Heating Rate	10km	0.5km	-	-	-
BBR			LWRH_CAMB	LW Radiative Heating Rate		0.0Mm	-	-	-

Those accuracies except for CPR are assumed under the condition that sensors developed by ESA functioned as expected.

The accuracies of ATLID are based on the information before the change of specifications.

The length of a scene is defined as the length of an orbit divided equally (default : 1 scene = 1 orbit)

CPR-ATLID-MSISynergy Cloud Products and Four Sensors Synergy Radiative Product is the final goal of the EarthCARE mission. Therefore, they are defined as the standard products, although they will be released one year after the start of MOP.

NRT and Statistics (L2c) will be adjusted appropreately by taking user's needs into account.

Data Products were decided and the accuracy of them were also decided in Joint Mission Advisory Group consists of European and Japanese scientists

References

http://www.jaxa.jp/projects/sat/earthcare/index e.html http://www.eorc.jaxa.jp/EARTHCARE/en/index.html http://www.esa.int/esaLP/LPearthcare.html

ALOS-2 (Advanced Land Observing Satellite-2)

The Advanced Land Observing Satellite-2 (ALOS-2) is a follow-on mission from the ALOS "Daichi". ALOS had contributed to cartography, regional observation, disaster monitoring, and resource surveys, until May 2011. ALOS-2 will succeed to this mission with enhanced capabilities.

Specifically, JAXA is conducting research and development activities to improve wide and highresolution observation technologies developed for ALOS in order to further fulfil social needs.

These social needs include: 1) Disaster monitoring of damage areas, both in considerable detail, and when these areas may be large 2) Continuous updating of data archives related to national land and infrastructure information 3) Effective monitoring of cultivated areas 4) Global monitoring of tropical rain forests to identify carbon sinks.

The state-of-the-art L-band Synthetic Aperture Radar (PALSAR-2) aboard ALOS-2, which is an active microwave radar using the 1.2GHz frequency range, will, in responding to society's needs, have enhanced performance compared to ALOS/PALSAR. PALSAR-2 is capable of observing day and night, and in all weather conditions.

ALOS-2 will be launched by the H-IIA Launch Vehicle.

	Major characteristics of ALOS-2					
Observation mode	Spotlight: 1m~3m resolution, 25km swath Stripmap: 3m~10m resolution, 50km~70km swath ScanSAR: 100m resolution, 350km swath					
Orbit	Type: Sun-synchronous sub-recurrent orbit Altitude: 628km Local sun time at Descending Node: 12:00 +/- 15min Revisit time: 14 days					
Design life	5 years (target: 7 years)					
Mass	Approx. 2 ton					

-- -.

Status

Phase C/D

References

http://www.jaxa.jp/projects/sat/alos2/index e.html