

Prepared by JAXA Agenda Item: C.1 or C.2 Discussed in Plenary

JAXA REPORT ON THE STATUS OF CURRENT AND FUTURE SATELLITE SYSTEMS

JAXA currently operates GOSAT, Ibuki and GCOM-W1, Shizuku.

GOSAT was launched on January 23, 2009, and has been operating properly since then. The data products are distributed through the GOSAT User Interface Gateway (GUIG).

GCOM-W1 was launched on May 18, 2012 and entered into the A-train orbit on June 29, then has moved to the regular observation operation on August 10 as scheduled after completion of the initial functional verification. The initial calibration and checkout are being performed, and the observation results are being released through JAXA press releases and its website.

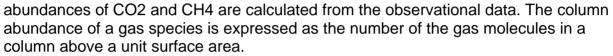
The developments of ALOS-2, GPM/DPR, EarthCARE/CPR and GCOM-C1 are under way.

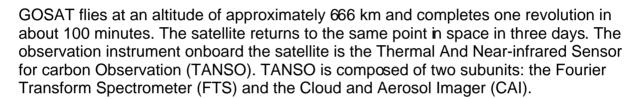
Both ALOS-2 and GPM core satellite will be launched in JFY2013. EarthCARE will be launched in JFY2015. GCOM-C1 will be launched in JFY2015 or later.

The specifications of current and planned data products are described in this Working Paper.

JAXA Report on the status of current and future satellite systems

1. Status of Current R&D Satellite Systems


Satellite s	Space Agency	Equator Crossing Time + Altitude	Launch date	Access to data or product s (Links)	Instrumen ts	Status, applications and other information
TRMM	NASA/ JAXA	non-sun- synchrono us (35° incl) 402 km	28/11/97	PMM data access page TRMM data product s	- PR (Precipitati on Radar) - TMI (TRMM MW Imager) - CERES - VIRS - LIS (Lightning Imaging Sensor)	Measures tropical rainfall/precipitat ion and radiation energy Precipitation Radar (PR) provided by JAXA Satellite bus and other instruments provided by NASA CERES no longer functional
GOSAT (IBUKI)	JAXA & Japan's Ministry of Environme nt	13:00 (D) 666km	23/01/20 09		TANSO/FT S, TANSO/C AI	Greenhouse Gases Observing Satellite monitoring the distribution of the density of carbon dioxide
GCOM- W1 "SHIZUK U"	JAXA	13:30 (A) 700 km	18/05/20 12		AMSR-2	Global water and energy circulation. Joining the A- train.



1.1 GOSAT (Ibuki)

The Greenhouse Gases Observing Satellite "IBUKI" (GOSAT) is the world's first spacecraft to measure the concentrations of carbon dioxide and methane, the two major greenhouse gases, from space. The spacecraft was launched successfully on January 23, 2009, and has been operating properly since then.

GOSAT observes infrared light reflected and emitted from the earth's surface and the atmosphere. Column

Specifications of FTS

	Band 1	Band 2	Band 3	Band 4		
Spectral coverage (µm)	0.758-0.775	1.56-1.72	1.92-2.08	5.56-14.3		
Spectral resolution (cm ⁻¹)	0.2	0.2	0.2	0.2		
Polarized light observation	Performed	Performed	Performed	Not Performed		
Targeted gases	O ₂	CO ₂ · CH ₄	$CO_2 \cdot H_2O$	CO ₂ · CH ₄		
Angle of instantaneous field of view	15.8 mrad.(corresponds to 10.5 km when projected on the earth's surface)					
Time necessary for a single scanning (sec.)	4.0 , 2.0 , or 1.1 (depending on the scanning mode being used)					

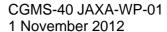
Specifications of CAI

	Band 1	Band 2	Band 3	Band 4		
Spectral coverage (µm)	0.370-0.390 (0.380)	0.664-0.684 (0.674)	0.860-0.880 (0.870)	1.56-1.65 (1.60)		
Targeted substances	Cloud and ae	Cloud and aerosol				
Swath (km)	1000	1000	1000	750		
Spatial resolution at nadir (km)	0.5	0.5	0.5	1.5		

All types of the GOSAT data products are to be provided for general users. Data users can search and order the Level 1 data (FTS Level 1B, CAI Level 1B, and CAI Level 1B+ data) and the higher level data products (FTS Level 2, CAI Level 2, FTS Level 3, CAI Level 3, Level 4A, and Level 4B data products). Among these, only the

Level 1 data and some of the Level 2 data products whose uncertainties have been evaluated in the instrument calibration and data validation activities are open to the general users so far. Other data products are still under preparation.

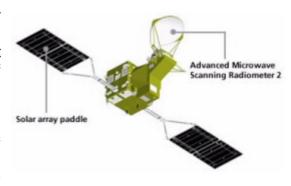
The GOSAT data products are distributed through the GOSAT User Interface Gateway (GUIG*), a website for GOSAT data distribution. Prior user registration is required for accessing the data products and can be done on "user authentication" page reached from "product & service" page on GUIG.


GUID*: https://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/GuigPage/open.do;jsessionid=0F6497855D3B130F97D71E3D2BEC9323?lang=en

GOSAT Data Products

Product Level	Sensor / Band	Product Designation	Description	Product Provision Unit	Data Format
L1B	FTS	FTS L1B data	Radiance spectral data obtained by performing Fourier transform on interferogram data	per FTS scene	HDF5
LIB	CAI	CAI L1B data	Radiance data (band-to-band and geometric cor- rections applied / data mapping not performed)	per CAI frame	
L1B+	CAI	CAI L1B+ data	Radiance data (band-to-band and geometric cor- rections applied / data mapping performed)	per CALITAINE	
	FTS	L2 CO ₃ column amount (SWIR)	CO ₂ column abandance data retrieved from SWIR radiance spectral data		
	SWIR	L2 CH ₄ column amount (SWIR)	CH ₄ column abandance data retrieved from SWIR radiance spectral data	can be selected	
L2	FTS TIR	L2 CO ₂ profile (TIR)	CO ₂ vertical profile data retrieved from TIR radi- ance spectral data	can be selected	
	FISTIR	L2 CH ₄ profile (TIR)	CH, vertical profile data retrieved from TIR radi- ance spectral data		
	CAI	L2 cloud flag	Cloud coverage data	per CAI frame	
	FTS	L3 global CO ₂ distribution (SWIR)	CO ₃ column-averaged mixing ratio data projected on a global map		HDFS
	SWIR	L3 global CH, distribution (SWIR)	CH ₄ column-averaged mixing ratio data projected on a global map	per month (global)	
	FTS TIR	L3 global CO ₂ distribution (TIR)	CO ₃ concentrations at each vertical level pro- jected on a global map	per monan (growa)	
L3	risin	L3 global CH, distribution (TIR)	CH ₄ concentrations at each vertical level project- ed on a global map		
		L3 global radiance distribution	Global radiance distribution data (3 days worth, including data for cloudy segments)		
	CAI	L3 global reflectance distribu- tion (clear-sky)	Clear-sky reflectance data (composed only of clear-sky segments selected from a month worth of data)	per 3 days (global)	
		L3 global NDVI Vegitation index global distribution data (cloudy segments excluded)		per 15 days 30° × 60° (lat. × lon.)	
L4A	-	L4A global CO ₂ flux	CO ₂ flux per each of 64 global regions (monthly average)	per year (64 regions)	Text
L4B	-	L4B global CO ₂ distribution	Three-dimentional global distribution of CO, concentration	per month 2.5° × 2.5° grid (lat. × lon.)	NetCDF

References


http://www.gosat.nies.go.jp/eng/gosat/info.htm

1.2 GCOM-W1 (Shizuku)

The Global Change Observation Mission 1st - Water "SHIZUKU" (GCOM-W1) mission aims to establish the global and long-term observation system to collect data, which is needed to understand mechanisms of climate and water cycle variations, and demonstrate its utilization. Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W1 satellite will continue Aqua/AMSR-E observations of water vapor, cloud liquid water, precipitation, SST, sea surface wind speed, sea ice concentration, snow depth, and soil moisture.

GCOM-W1 was launched from the Tanegashima Space Center at 1:39 am on May 18, 2012 (Japan Standard Time) and entered into the A-train orbit on June 29. The A-Train satellite constellation cross the equator within a few minutes of one another at around 1:30 pm local time, and GCOM-W1 is flying in front of the Aqua satellite, thus it takes the most front position in the A-Train until another NASA satellite, OCO-2 joins the constellation. GCOM-W1 has started the initial observations since July 3, after increasing the antenna rotation of the onboard AMSR2 to 40 rpm, then has moved to the regular observation operation on August 10 as scheduled after completion of the initial functional verification

AMSR2 onboard the GCOM-W1 satellite is a remote sensing instrument for measuring weak microwave emission from the surface and the atmosphere of the Earth. From about 700 km above the Earth, AMSR2 will provide us highly accurate measurements of the intensity of microwave emission and scattering. The antenna of AMSR2 rotates once per 1.5 seconds and obtains data over a 1450 km swath. This conical scan mechanism enables AMSR2 to acquire a set of daytime and night-time data with more than 99% coverage of the Earth every 2 days.

The initial calibration and checkout are being performed, during which acquired data will be compared with observation data on the ground for confirming data accuracy and make some data correction. The observation results are being released through press releases and website (https://gcom-w1.jaxa.jp/auth.html).

Frequency Channels and Resolutions of AMSR2 (Orbit altitude of 700 km and main-reflector size of 2.0m are assumed)

orbit attitude of 700 km and main-reflector size of 2.0m are assumed						
Center frequency [GHz]	Band width [MHz]	Polarizatio n	Beam width [deg.] (Ground resolution [km])	Sampling interval [km]		
6.925 / 7.3	350	V and H	1.8 (35 x 62)	10		
10.65	100		1.2 (24 x 42)			
18.7	200		0.65 (14 x 22)			
23.8	400		0.75 (15 x 26)			
36.5	1000		0.35 (7 x 12)			
89.0	3000		0.15 (3 x 5)	5		

GCOM-W1 Standard Products

Product	Range	Comments
Brightness temperatures	110190	•••••••
Brightness temperatures	2.7-340K	Global, 6 frequency with dual polarizations
Geophysical parameters		
Integrated water vapour	0 - 70kg/m²	Over global ocean*, columnar integrated value
Integrated cloud liquid water	0 - 1.0kg/m²	Over global ocean*, columnar integrated value
Precipitation	0 - 20mm/h	Global (except over ice and snow), surface rain rate
Sea surface temperature	-2 - 35℃	Global ocean*
Sea surface wind speed	0 - 30m/s	Global ocean*
Sea ice concentration	0 - 100%	High latitude ocean areas
Snow depth	0 - 100cm	Land surface (except dense forest regions)
Soil moisture	0 - 40%	Land surface (except ice sheet and dense forest regions)

Except sea ice and precipitating areas

References

http://www.jaxa.jp/projects/sat/gcom/index e.html http://suzaku.eorc.jaxa.jp/GCOM/index.html

2. Status of Future R&D Satellite Systems

Satellites	Space Agenc y	Equator Crossing Time + Altitude	Planne d Launch Date	Planned access to data or product s (Links)	Planned Instrumen ts	Status, application s and other information
ALOS-2	JAXA	12:00 628km	Japan Fiscal Year 2013			PALSAR-2
GPM (Core Observator y)	NASA / JAXA	407 km Non sun- synchronou s (65° incl)	Feb 2014	Data access		Global Precipitation Measureme nt core spacecraft, follow-on and improvemen t of TRMM Dual- frequency (Ka/Ku) Precipitation Radar (DPR), GPM Microwave Imager (GMI)
EarthCARE	ESA- JAXA	10:30 (D) 450 km	11/2015			ATLID, BBR, CPR, MSI, Cloud, radiation and aerosol interaction processes
GCOM-C1	JAXA	10:30 (D) 798 km	Japan Fiscal Year 2015 or later			Carbon cycle and radiation budget (Atmospher e, Ocean,

CGMS-40 JAXA-WP-01 1 November 2012

			Land and
			Cryosphere)

2.1 ALOS-2

The Advanced Land Observing Satellite-2 (ALOS-2) is a follow-on mission from the ALOS "Daichi". ALOS had contributed to cartography, regional observation, disaster monitoring, and resource surveys, until May 2011. ALOS-2 will succeed to this mission with enhanced capabilities. Specifically, JAXA is conducting research and development activities to improve wide and high-resolution observation technologies developed for ALOS in order to further fulfil social needs.

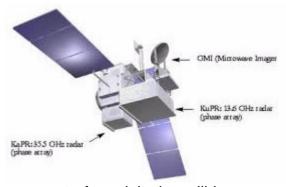
These social needs include: 1) Disaster monitoring of damage areas, both in considerable detail, and when these areas may be large 2) Continuous updating of data archives related to national land and infrastructure information 3) Effective monitoring of cultivated areas 4) Global monitoring of tropical rain forests to identify carbon sinks.

The state-of-the-art L-band Synthetic Aperture Radar (PALSAR-2) aboard ALOS-2, which is an active microwave radar using the 1.2GHz frequency range, will, in responding to society's needs, have enhanced performance compared to ALOS/PALSAR. PALSAR-2 is capable of observing day and night, and in all weather conditions.

ALOS-2 will be launched by the H-IIA Launch Vehicle.

Major characteristics of ALOS-2

	•
Observation mode	Spotlight: 1m~3m resolution, 25km swath Stripmap: 3m~10m resolution, 50km~70km swath ScanSAR: 100m resolution, 350km/490km swath
Orbit	Type: Sun-synchronous sub-recurrent orbit Altitude: 628km Local sun time at Descending Node: 12:00 +/-15min Revisit time: 14 days
Design life	5 years (target: 7 years)
Mass	Approx. 2 ton


References

http://www.jaxa.jp/projects/sat/alos2/index e.html

2.2 GPM and DPR

The Global Precipitation Mission (GPM) is a satellite program to measure the global distribution of precipitation accurately in a sufficient frequency so that the information provided by this program can drastically improve weather predictions, climate modelling, and understanding of water cycles. Its feasibility has been studied at Goddard Space Flight Center of National Aeronautics and Space

Administration (NASA) and JAXA. The accurate measurement of precipitation will be achieved by the Dual-frequency Precipitation Radar (DPR) installed on the GPM core satellite. The DPR on the GPM core satellite is being developed by JAXA and National Institute of Information and Communications Technology (NICT).

NASA and JAXA signed implementation phase MOU in July 2009. DPR Critical Design Review (CDR) completed in October 2009. While, NASA Mission CDR completed in December 2009. DPR flight model was manufactured and tested at JAXA Tsukuba Space Center, and the flight model was delivered to NASA Goddard Space Flight Center on March 2012 The integration of DPR onto the GPM Core Observatory was successfully completed in May 2012.

The GPM Core Observatory carrying DPR (KuPR and KaPR) and GPM Microwave Imager (GMI) is scheduled to be launched in early 2014 from JAXA's Tanegashima Space Center. Its orbit will be non-sun-synchronous with 407km altitude and 65 degrees inclination.

Major characteristics of DPR

Name	KuPR	KaPR	
radar type	active phase	d array radar	
Antenna	slotted waveg	guide antenna	
Frequency	Ku-band	Ka-band	
	13.60 GHz 35.55 GHz		
peak transmit	> 1000 W > 140 W		
power	7 1000 11	7 . 10 11	
Swath	245 km 125 km		
horizontal	5 H	km .	
resolution			
range resolution	250 m	250m/500m	
observation altitude	surface	~ 19 km	
observation rain	0.5 mm/h ~	0.2 mm/h ~	
rate			
Size	2.4 m x 2.4 m x 0.6 m	1.44 m x 1.07 m x 0.7	
		m	
	< 470 kg	< 336 kg	

There are three kinds of products that are Standard product, Research product and Near-real time product. Research products are the ones in research phases; however, those have possibilities to be Standard products. Several candidates for research product are considered at JAXA GPM project, and will be defined later. Near-real time products will be generated using estimated orbital information for prompt data release and distributed to users who need GPM data as soon as possible for their operational purposes.

Current plan of JAXA GPM products is updated. Other than JAXA products listed up in the following Table, some of the GPM standard products processed at NASA will be distributed from JAXA. GPM standard products will be authorized between the U.S. and Japan Joint Precipitation Measuring Mission (PMM) Science Team.

JAXA is responsible for the GPM/DPR algorithm development for engineering values (Level 1) and physical products (e.g. precipitation estimation) (Level 2 and 3) and the quality control of the products as the sensor provider. Furthermore, JAXA is planning to generate the DPR/GMI combined algorithms, which will be based on DPR maximizing the use of DPR information, and Global Precipitation Map product, which will merge multiple satellite information and mapped data with high temporal resolution, considering data needs in some operational areas such as weather forecasts and flood warning. Higher level of DPR and DPR/GMI combined algorithms are jointly developed by Japan and US joint algorithm team.

To meet the GPM objectives, retrieval algorithms will require global applicability, robustness, and long-term stability. Algorithms that can be extended and applied for similar instruments (e.g., PR, and microwave radiometers on board the other satellites) and historical data records are preferable for integrated retrieval. Computationally efficient, fast-processing algorithms are important for the operational applications of the products. Level 2 of the Dual-frequency Precipitation product and the DPR/GMI combined product and Level 3 Global Precipitation Map product, which are denoted in light grey in the table below, are also required to process in near real time. Each near-real-time algorithm will be developed based on the standard algorithm. All near-real-time products have to be produced and distributed within 60 minutes after acquisition of observation data.

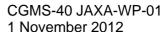
JAXA GPM near-real-time products

			Tour time products		
Level	Algorithm	Product	Major Physical Parameters	Unit	Coverage
1R	Depends on each sensor	Microwave radiometer product	Brightness temperature	arbitraril y	Depends on each sensor
2R	DPR algorithm (Japan-US joint)	Dual-frequency precipitation product	Rain rate profile, drop size distribution, precipitation status (rain/snow), attenuation profile	arbitraril y	245km
	DPR/GMI combined algorithm (Japan-US joint)	DPR/GMI combined product	rain rate profile, surface rain rate	Orbit	125km
3R	Global precipitation map algorithm	Global precipitation map product	Mean rainfall, observation number, rain pixel number	Hourly	Global

JAXA GPM Standard Products

Level	Algorithm	Product	Major physical parameter	Unit	Coverage
1	KuPR algorithm	KuPR product	Received power profile	Orbit	245km (swath)
	KaPR algorithm	KaPR product	Received power profile	Orbit	125km (swath)
2	DPR algorithm (Japan-US joint)	KuPR product	Radar reflectivity profile, normalized radar surface cross section (°), rain type, bright-band height, attenuation corrected radar reflectivity profile, rain rate profile	Orbit	245km (swath)
		KaPR product	Radar reflectivity profile, normalized radar surface cross section (°), rain type, bright-band height, attenuation corrected radar reflectivity profile, rain rate profile	Orbit	125km (swath)
		Dual-frequency precipitation product	Rain rate profile, drop size distribution, precipitation status (rain/snow), attenuation profile	Orbit	245km (swath)
	DPR/GMI combined algorithm (Japan- US joint)	DPR/GMI combined product	rain rate profile, surface rain rate	Orbit	245km (swath)
	DPR latent heating algorithm	DPR latent heating product	Latent heating profile, rain type	Orbit	245km (swath)

JAXA GPM Standard Products (Cont'd)


ا میرما	Algorithm		Major physical personator	Linit	Cayaraga
Level	Algorithm	Product	Major physical parameter	Unit	Coverage
3	DPR algorithm (Japan-US joint)	Dual-frequency precipitation product	Mean surface rainfall, time information, Ascending/Descending flag	Daily	Global
			Mean rainfall (dual), observation number, rain pixel number, mean bright- band height, storm height, rain/snow determination, time information	Daily (Asc/Dsc)	Global
			Mean rainfall (single, dual), observation number, rain pixel number, mean bright-band height, storm height, mean attenuation corrected radar reflectivity profile, mean DSD parameters, histogram	Monthly	Global
	DPR/GMI combined algorithm (Japan- US joint)	DPR/GMI combined product	Mean rainfall, observation number, rain pixel number,	Monthly	Global
	DPR latent heating algorithm	DPR latent heating product	Latent heating profile, number of latent heating pixel	Orbit Monthly	Global Global
	Global	Global	Mean rainfall, observation	Hourly	Global
	precipitation map algorithm	precipitation map product	number, rain pixel number	Monthly	Global

NOTE: Other than these products listed up in this table, some of the GPM standard products processed at NASA will be distributed from JAXA. GPM standard products will be authorized between the U.S. and Japan Joint PMM Science Team.

CEOS Precipitation Constellation

CEOS Precipitation Constellation (PC) is proposed as one of first four virtual constellations, and JAXA and NASA is co-leading CEOS PC activities with other participating agencies.

CEOS PC holds annual meeting (International workshop) to exchange information of the individual satellite projects and specifications of instruments, and to establish annual or biennial Work Plan to implement the broad goals and specific phase objectives outlined in the PC Implementation Plan. The fourth CEOS PC International Workshop was held in 10 November 2011 in Denver, U.S., which was originally scheduled in April 2011 in Brazil, but postponed because of the March Earthquake in Japan. At the forth workshop, CEOS PC 2011-2012 Work Plan and 2009-2011 Accomplishment will be developed. In addition, the relationship of proposed CEOS PC Portal to the proposed CEOS Water Portal will be discussed at the workshop.

Results of the workshop will be uploaded to the CEOS PC web site (http://ceospc.gsfc.nasa.gov) operated by NASA.

As a follow up to discussion at the 4th workshop, the subsequent 2012 CEOS-GEO Actions Workshop, and the CEOS SIT-27 Meeting, JAXA and NASA, co-chairs of the CEOS PC, are proceeding with the first phase of the PC Data Portal Development. White Paper describing the concept and the implementation approach was distributed to PC members in September 2012. The PC Data Portal with interface to the CEOS Water Portal is a contribution to the GEO Water Strategy and 2012 CEOS-GEO Action WA-01-C1 3.

References

http://www.jaxa.jp/projects/sat/gpm/index e.html

http://www.eorc.jaxa.jp/GPM/index_e.htm

http://pmm.gsfc.nasa.gov/

http://ceospc.gsfc.nasa.gov/

2.3 EarthCARE and CPR

The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) is a joint European-Japanese mission addressing the need for a better understanding of the interactions between cloud, radiative and aerosol processes that play a role in climate regulation. Japan (JAXA and NiCT) will provide Cloud Profiling Radar (CPR) to the spacecraft.

CPR is a 94 GHz Doppler Radar which has several characteristics. First point is the high sensitivity. This requirement is divided into large antenna size requirement, low noise figure of receiver requirement and high power of transmitter requirement. Second point is the Doppler capability. To materialize this function with satisfactory accuracy, large diameter of antenna with precise surface figure and high pulse repetition frequency (PRF) are required. To keep accuracy especially at boundary layer region, several other fine characteristics, such as side lobe characteristics of antenna, cross polarization characteristics and so on, are also required for CPR design.

CPR Major Specifications (Draft)

Radar type	94 GHz Doppler Radar
Center frequency	94.05 GHz
Pulse width	3.3 micro second (equivalent to 500m vertical resolution)
Beam width	0.095 deg
Polarization	Circular
Transmit power	> 1.5 kW (Klystron spec.)
Height range	-0.5 ~ 20 km
Resolution	500 m (100 m sample); Vertical, 500m integration;
Nesolution	Horizontal
Sensitivity*	-35 ~ +21 dBZ
Radiometric accuracy*	< 2.7 dB
Doppler range*	-10 ~ +10 m/s
Doppler accuracy*	< 1 m/s
Pulse repetition	Variable; 6100~7500 Hz
frequency	valiable, 0100~7500 H2
Pointing accuracy	< 0.015 degree

^{*;} at 10 km integration and 387 km orbit height

JAXA will produce not only CPR products but also other products from the each sensor and the synergetic use of other sensors.

EarthCARE JAXA Standard Products (1/2)

Standard Products (L1b)

Sensor(s)	Processing Level	Product Name	Primary Parameter	Pixel Integration Length				Release Accuracy	Standard Accuracy	Target Accuracy
				Horizontal	Vertical	Horizontal	Vertical			
			Received Echo Power		0.1km		0.1km	< 4.7dB	< 2.7dB	-
		CPR One-sensor Received Echo Power	Radar Reflectivity Factor	0.5km	V. IKM		V. I Km	< 4.7dB	< 2.7dB	< 2.7dB
CPR	L1b		Surface Radar Cross Section		-	0.5km	-	-	-	-
		and Doppler Products	Doppler Velocity					-	< 1m/s	< 0.2m/s
			Pulse Pair Covariance		0.1km		0.1km	-	-	-
			Spectrum Width					-	-	-

Standard Products (L2a)

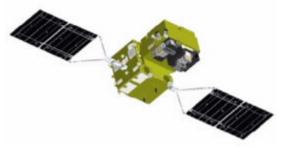
Sensor(s)	Processing	Donate of Maria	Dimmi Committee	Pixel Integration Length		Pixel Spacing		Release	Standard Accuracy	Target Accuracy
Sensor(s) Level	Product Name	Primary Parameter		-	Accuracy					
			Integrated Radar Reflectivity	Horizontal 1km	Vertical 0.1km	Horizontal	Vertical			
			Factor	10km	0.5km			-	-	-
CPR L2a	CPR One-sensor	Integrated Doppler Velocity	1km	0.1km	1km		_	/ 1m/n	< 0.2m/s	
CPR	CPR L2a	Echo Products	Integrated Doppler Velocity	10km	O.Slom	IKM	0.1km		< 1m/s	< 0.2m/s
			Gas Correction Factor	1km	0,1km			_	_	_
				10km	0.5km					
			Cloud Mask	1km 10km	0.1km 0.5km			±30%	±10%	±5%
				1km	0,1km					
			Cloud Particle Type	10km	0.5km			±100%	±50%	±20%
			Radar Reflective Factor with					< 7.6dB	< 5.7dB (+1)	< 4.5dB
		CPR One-sensor Cloud	Attenuation Correction	-		0.1km				
CPR	L2a	Products	Liquid Water Content Ice Water Content			1km	-	-	±100%	±50%
			Effective Radius of Liquid	/km	0.1km					
			Water Cloud	77001	/AIII			-	-	-
			Effective Radius of Ice					_	_	_
			Water Cloud							
			Optical Thickness		_		-	-	±100%	±50%
		ATLID One-sensor Cloud and Aerosol Products	Feature Mask	200m	0.1km	200m	0.1km	±100%	±40%	±10%
				1km 10km	D. 7800	1km 10km				±10%
			Towns March	1km	0.1km	1km	0.11	+100*	+ 400	+ 100
			Target Mask	10km	U. TRM	10km	0.1km	±100%	±40%	±10%
			Aerosol	- 10km	O. Ikm	10km	0.1km	±60%	±40%	±20
			Extinction Coeff. Aerosol							
			Backscat, Coeff.					±90%	±70%	±50%
			Aerosol					+1500	± 1100	±70%
			Lidar Ratio					±150%	±110%	±70%
ATLID	L2a		Aerosol					±150%	±130%	±100%
			Depolarization Ratio Cloud							
			Extinction Coeff.	10km	0.1km	10km	0.1km	±50%	±30%	±15%
			Cloud	1km		1km	0.11			
			Backscat, Coeff.	10km	0.1km	10km	0.1km	±90%	±70%	±50%
			Cloud	1km	O. 1km	1km	0.1km	±140%	±100%	±65%
			Lidar Ratio	10km		10km				
			Cloud Depolarization Ratio	1km 10km	0.1km	1km 10km	0.1km	±150%	±100%	±100%
			Planetary Boundary Layer	1km		1km				
			Height	10km	0.1km	10km	0.1km	±500m	±300m	±100m
			Cloud Flag including Cloud			191011	-	±15% Ocean	±15%	±10%
			Optical Thickness of Liquid					±10%		
		L2a MSI One-sensor Cloud Poducts	Water Cloud					±10%	±100%	±50%
			Effective Radius of Liquid			0.5km			(converting to	(converting to
MSI	L2a		(1.6 µm) Effective Radius of Liquid	0.5km	-			±30%	LWP)	LWP)
			(2.2 µm)							
			Cloud Top Temperature					±1K	±3K	±1.5K
			Cloud Top Pressure					-	-	-
			Cloud Top Height					-	-	-

EarthCARE JAXA Standard Products (2/2)

Sensor(s)	Sensor(s) Processing Level			Pixel Integra	Pixel Integration Length		ngth Pixel Spacing		Standard Accuracy	Target Accuracy
	2010			Horizontal	Vertical	Horizontal	Vertical	Accuracy	riccaracy	
			Cloud Mask	1km	0.1km			-	root mean	-
			Cloud Mask	10km	0.5km	1km		-		-
			Cloud Particle Type	1km	0.1km			-		-
				10km	0.5km			-		-
			Effective Radius of Liquid	1km	0,1km			-		±2µm
CPR		CPR-ATLID Synergy	Water Cloud	10km	0.5km		0.1km	-	square of errors	- Zpiii
+	L2b	Cloud Products	Effective Radius of Ice	1km	0.1km		0.1km	-	of one-sensor	-
ATLID		Gloud Products	Water Cloud	10km	0.5km			-	products	-
			Liquid Water Content	1km	0.1km			-	products	±20%
				10km	O.Skom			-		7.50
				1km	0.1km			-		±30%
			sce water content	10km	0.5km			-		±30%
			Optical Thickness	1km	-		-	-		-
			Cloud Mask	1km	0.1km	Skm 1km 5km 1km 5km 1km 5km 1km 5km 1km 1km 1km	0.1km	-	root mean square of errors of one-sensor products	-
				10km	0.5km			-		-
			Cloud Particle Type	1km	0.1km			-		-
				10km	0.5km			-		-
			Effective Radius of Liquid	1km	0.1km			-		±2µm
			Water Cloud	10km	O.Skom			-		—
CPR		CPR-ATLID-MSI	Effective Radius of Ice	1km	0,1km			-		-
+			Water Cloud	10km	0.5km			-		-
ATLID	L2b		award Water Content	1km	0.1km			-		±20%
+	LZD	Synergy Cloud Products		10km	0.5km			-		±20%
MSI				1km	0.1km			-		±30%
mat			sce water content	10km	O.Skon			-		T 30%
			Optical Thickness	1km			-	-		-
			Opucai i riickness	10km				-		-
			Liquid Water Path	1km	_			-		-
			Equiu mater Patri	10km	-			-		-
			Ice Water Path	1km				-		-
			ice water Path	10km				-		-
CPR		Four Sensors Synergy	SW Radiative Flux		_		-	-	±25W/m2	±10W/r
ATLID	L2b	Radiation Budget	LW Radiative Flux	10km	_	10km			±20W/mZ	± 10477
MSI	- 20	Products	SW Radiative Heating Rate	rokm	0.5km	IUKM	0.5km	-	-	-
BBR			LW Radiative Heating Rate					_		_

NOTE: The accuracy is defined using the "Pixel Integration Length" in red italic numbers. The accuracies of CPR L1b are defined by 10km integration. Those accuracies except for CPR are assumed under the condition that sensors developed by ESA functioned as expected. The accuracies of ATLID is based on the information before the change of specifications. The length of a scene is defined as the length of an orbit divided equally (default: 1scene = 1 orbit) CPR-ATLID-MSI Synergy Cloud Products and Four Sensors Synergy Radiation Budget Products are the final goal of the EarthCARE mission. Therefore, they are defined as the standard products, although they will be released one year after the start of MOP. Pixel Spacing of CPR-ATLID-MSI product is TBD.

Data Products were decided and the accuracy of them were also decided in Joint Mission Advisory Group consists of European and Japanese scientists


References

http://www.jaxa.jp/projects/sat/earthcare/index_e.html http://www.eorc.jaxa.jp/EARTHCARE/en/index.html http://www.esa.int/esaLP/LPearthcare.html

2.4 GCOM-C1

Climate change observation will be performed by the Second-generation Global Imager (SGLI), a multi-wavelength optical radiometer, onboard the GCOM-C (Climate) satellite on clouds, aerosol, seawater color (marine orgasms), vegetation, snow and ice.

The first generation of GCOM-C (called GCOM-C1) is scheduled to be launched in JFY2015 or later. Its orbit will be sun-synchronous with 798km altitude (over the equator), 98.6 degrees inclination and 10:30 local time of descending node.

SGLI Channel Specifications

OOLI Chamiei Opecinications									
			L _{std}	L _{max}	SNR at Lstd	IFOV			
СН	VN, P, SW: nm T: m		W/m²	N, P: ² /sr/ m Kelvin	VN, P, SW: - T: NE T	m			
VN1	380	10	60	210	250	250			
VN2	412	10	75	250	400	250			
VN3	443	10	64	400	300	250			
VN4	490	10	53	120	400	250			
VN5	530	20	41	350	250	250			
VN6	565	20	33	90	400	250			
VN7	673.5	20	23	62	400	250			
VN8	673.5	20	25	210	250	250			
VN9	763	12	40	350	400	1000			
VN10	868.5	20	8	30	400	250			
VN11	868.5	20	30	300	200	250			
P1	673.5	20	25	250	250	1000			
P2	868.5	20	30	300	250	1000			
SW1	1050	20	57	248	500	1000			
SW2	1380	20	8	103	150	1000			
SW3	1630	200	3	50	57	250			
SW4	2210	50	1.9	20	211(TBD)	1000			
T1	10.8	0.74	300	340	0.2	500			
T2	12.0	0.74	300	340	0.2	500			

^{*1}Polarization channels (P1 and P2) should have capability to observe at three polarization direction (0,60,120 deg.) and NADIR / Tilt view at +-45 deg.

GCOM-C1 Standard products

e /I st: km, :1km st: km
st: km, :1km st:
st: km, :1km st:
:1km st:
:1km st:
st:
km
KM
m
e),
bal)
ist) ore)
л <i>е)</i>
bal)
Dai,
ıst)
ore)
bal)
<u>ne)</u>
al)
ne)
al)

Access to GCOM data

To R&D and operational organizations, JAXA can provide GCOM data which includes standard products, processed data and related information which meets users' needs to user organizations, via the JAXA on-line system (free of charge), optionally via a dedicated communication line or media upon users' needs (minimal cost charged) under the cooperative agreements with JAXA after commissioning (launch + 3 months) for Calibration and Validation, keeping the data latency, if required (GCOM-W1 global data: observation time + 150min.).

To general researchers, JAXA will provide GCOM standard product via the JAXA online system (free of charge) after Calibration and Validation phase in about one year after the launch. Simple registration and consent to data use conditions are required on the system. Before providing GCOM standard products, AMSR and AMSR-E standard products have been available on the system since August, 2011 (https://gcom-w1.jaxa.jp/).

Direct reception; receiving the real-time observation data from the GCOM satellites at the users' ground station can be available, subject to conditions defined by JAXA in an individual agreement. Actual cost due to the direct reception is charged on users, in principle. (e.g. cost for provision and maintenance of processing software)

Secondary distribution is basically prohibited, but R&D user agencies can distribute GCOM data to third parties, provided that they nominate the third parties to JAXA and make them comply with the 'rights and use conditions' specified in the GCOM data policy.

For commercial purpose, JAXA makes license agreements with commercial purpose users and imposes royalties on them.

References

http://www.jaxa.jp/projects/sat/gcom/index_e.html http://suzaku.eorc.jaxa.jp/GCOM/index.html