CGMS-XXVIII JPN-WP-14 Prepared by JAPAN Agenda Item III/1

SUMMARY OF COMMENTS FROM NWP CENTERS REPRESENTED IN WGNE ON THE LARGE DIFFERENCES IN SATELLITE WIND OBSERVATION ERRORS ASSIGNED AT NWP CENTERS

In order to respond to Action Item 27.19, JMA on behalf of CGMS sent to members of WGNE/JSC a questionnaire on the observation errors assigned at NWP centers and requested their comments. This document is the summary of them from NWP centers represented in WGNE and was agreed to submit to CGMS-XXVIII.

CGMS Members to note the document and to inform and/or advise to NWP centers on the usage of satellite winds for NWP centers to improve their operational NWP systems.

SUMMARY OF COMMENTS FROM NWP CENTERS REPRESENTED IN WGNE ON THE LARGE DIFFERENCES IN SATELLITE WIND OBSERVATION ERRORS ASSIGNED AT NWP CENTERS

SUMMARY OF COMMENTS

It is the concern of each NWP center to assign the observation errors in the best way for their system; if this results in substantially different values being assigned between centers, there shouldn't really be of much concern. Since each NWP center uses different thinning, quality control, and assimilation methods, and different background error statistics, it is not surprising that the observation errors are different among centers (see Tables 1 and 2). It is to be noted that quite different values are assigned even to the observation errors of radiosonde data, and that ECMWF, for example, changed satellite wind observation errors over the years according to the change in assimilation methods as follows:

Method	1000	850	700	500	400	300	250	200	150) 100 (hPa)
3D-OI	: 2.1	2.1	2.1	4.2	4.2	4.2	4.2 4	.2 4	4.2 4	4.2 (m/s)
3D-Var(Jan96)	: 1.4	1.4	1.4	2.5	3.0	3.5	3.5 3	.5 3	3.5 3	3.5 (m/s)
4D-Var(Nov97)	: 2.0	2.0	2.0	3.5	4.5	5.0	5.0 5	.0 5	5.0 5	5.0 (m/s)

The specified observation error should reflect the subset of data used by the analysis scheme. Very strict quality control (by whatever means prior to the analysis) can restrict the spread of the data significantly, in which case a very low observation error can be appropriate. In the other extreme one can choose to assimilate a very dense set of observations, in which case it may be appropriate to use a larger observation error in order to guard against the ill effects of biases and/or error correlations in the observations. It is to be noted that some of the satellite winds are very strongly affected by a negative wind speed bias. In general the impact of satellite winds is to define broad shaped structures and not very narrow structures like jet streamline features. Systematic lowering of maximum wind speeds results mostly in undesirable damping of baroclinic activity in models. As for the error correlation, the satellite wind producers are distributing more and more sets of winds at high resolution and with a lot of internal redundancy. If this redundancy is not accounted for by a proper screening, data-selection or spatial correlation on the observation error, then it can be compensated by increasing the observation error.

There may also be a need to specify unrealistically large (or small) observation errors to compensate for known deficiencies in the specification of background errors used by the assimilation.

Information and/or advice from CGMS to NWP centers on the observation errors of satellite winds would be quite useful for NWP centers to improve their operational NWP systems.

NWP center (Assimilation method)	Level (hPa)	1000	850	700	500	400	300	250	200	150	100
BoM	Satellite (m/s)	3.0	3.0	3.0	3.0	6.0	6.0	6.0	6.0	6.0	6.0
	Radiosonde (m/s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
(3D-OI with	Background	Backgr	ound errors	s of winds fro	om 1000 to 1	100 hPa var	y with latitu	de, but are	mostly betw	een 2 m/s (5	00 hPa
T239 L29 model)	(6-hour prediction)	and be	ow) and 5	m/s (100 hP	a), for each	component	•				
CMA	Satellite (m/s)	2.5	2.5	2.5	2.5	5.0	5.0	5.0	5.0	5.0	5.0
CIVIA	Radiosonde (m/s)	2.2	2.5	2.6	3.1	3.7	3.8	3.3	3.0	2.8	2.4
(3D-OI with	Background	Backgr	ound error	's of winds fr	rom 1000 to	100 hPa va	ry with altit	ude and lat	itude, and o	lepend on tl	ne data
T106 L19 model)	(6-hour prediction)	density in previous analysis. A typical tropical profile of the U-component background error increases from									
,	(o nour production)	1.0 m/s at 1000 hPa to 5.8 m/s at 300 hPa, and then decreases to 5.0 m/s at 100 hPa.									
	Satellite (m/s)	3.8	3.8	3.8	3.8	7.5	7.5	7.5	7.5	7.5	7.5
CMC	Radiosonde (m/s)	1.6	1.7	1.8	2.0	2.2	2.5	2.6	2.5	2.2	2.0
		The ba	ckground e	errors vary w	vith latitude	and altitud	le. Typicall	y, they are	around 2.5 t	to 3.0 m/s at	: mid
(3D-Var with	Background	levels a	und varies f	from 3.0 to 4	l.5 m/s at je	t level. The	current val	ues were de	etermined fr	om an ense	mble
0.9 deg. L28 model)	(6-hour prediction)	of 48-24	4 hour fore	casts statist	tics.						
	Satellite (m/s)	3.0	3.0	3.0	3.0	6.0	6.0	6.0	6.0	6.0	6.0
סעו	Radiosonde (m/s)	2.0	2.4	2.5	3.4	3.6	3.8	3.2	3.2	2.4	2.2
(3D-OI with 60km L31 model)	Background (6-hour prediction)	The background error is determined by a modified (dependant from analysis error of previous analysis) climatology of first guess errors. In region of satellite winds (subtropics and tropics, around 400-150 hPa) the background error of wind components starts at 5.0 m/s and reaches values of 15 m/s in very data sparse regions. A revision of the satellite wind observation error has to be combined with a revision of the climatology of background error.									
	Satellite (m/s)	2.0	2.0	2.0	3.5	4.5	5.0	5.0	5.0	5.0	5.0
	Radiosonde (m/s)	1.8	1.8	1.9	2.1	2.5	2.6	2.5	2.5	2.4	2.2
ECMWF											
(4D-Var with TL319 L60 model)											

Table 1. Observation errors of satellite and radiosonde winds and background error of winds assigned at NWP centers

NWP center (Assimilation method)	Leve	el (hPa)	1000	850	700	500	400	300	250	200	150	100
	Back (3-hour]	ground prediction)	The specified background errors vary strongly with altitude and latitude, and depend on the in previous analyses. A typical tropical profile of the U-component background error increases at 1000 hPa to 2.2 m/s in the upper troposphere. In mid-latitudes it is also around 1 m/s nea - it increases to 2.7 m/s at jet level, and then decreases to about 2.0 m/s at 100 hPa. These cu are significantly lower than those used at ECMWF until June 2000, which in turn were lowe used before October 1999. The reductions in specified background error reflect the gradual improvement in short-range facturacy, and that the background now is a 3-hour forecast instead of 6-hour							n the data o eases from s near the s ese current e lower than ange forecas	lensity 1.0 m/s surface values n those sts	
JMA	Satell	ite (m/s)	3.0	3.0	3.0	3.0	3.2	3.5	3.7	3.9	4.1	4.5
	Radioso	onde (m/s)	1.0	1.0	1.1	1.2	1.3	1.5	1.6	1.8	1.9	2.2
(3D-OI with	Back	ground	The bac	ckground e	error of wind	ls is the sar	ne as the ol	servation e	rror of sate	ellite winds,	since the la	atter is
1213 LS0 model)	(6-hour	prediction)	assume	d to be equ	al to the for	rmer.	4.00	4.00	4.04	5.00	<u> </u>	5.00
	Satellite	METEOSAT	2.75	2.80	3.08	3.85	4.29	4.62	4.84	5.06	5.06	5.06
	(m/s)	GOES	2.75	2.00 2.20	3.08	3.85 4.55	4.29	4.02	4.84	5.00	5.00	5.06
		GMS	3.23	5.50	3.04	4.55	5.07	5.40	5.72	5.96	5.98	5.90
Meteo France	Radioso	onde (m/s)	2.3	2.4	2.5	3.0	3.3	3.6	3.7	3.8	3.8	3.8
(4D-Var with T199 C3.5 L31 model)	Back (3-hour)	ground prediction)	They an techniq in a wa except o Note th deviatio For any for ECM	re derived f ue. The ba y similar t once or twi nat because on is direct other time MWF).	from statistic ckground er to ECMWF. ce a year wl e of the 4D- ly applicabl e the backgr	cal computa ror standar However, t hen the stat Var perform e only at th ound error	tions perfor d deviation here is no v cistics are re- ned on a 6 e beginning implicitly us	med on arch for the basic ariation fro computed a hour time of the 4D-V red is depen	nived foreca c fields vari m one assir and updatec window, thi /ar time wi dent also or	sts, using th es with latit nilation cycl l. is backgrour ndow (21, 03 n the atmosp	e so-called ude and lor le to the ne nd error sta 3, 09 and 1 here dynan	"NMC" 1gitude xt one, andard 5UTC). nics (as
	Satell	ite (m/s)	1.3	1.7	2.0	2.5	3.3	3.3	3.3	3.3	3.6	5.5
UKMO	Radioso	onde (m/s)	1.8	1.6	1.5	1.9	2.4	2.6	2.8	2.5	2.2	1.9
(3D-Var with 0.83 x 0.56 deg. L30 model)	Back (6-hour)	ground prediction)	The bac Statisti Ingleby In the c errors c	kground en cal Structu (To appea quality con on the sync	rrors used ir re of Foreca r in QJRMS trol (in our ptic situatio	n our 3D-Va st Errors an , accepted i preliminary on.	r are a funct d its Repres n June 2000 y observatio	ion of latitu entation in)). n processin	de, level, ar the Met. Off g), we also	nd season, as fice Global 3 allow for so	described i D-Var" by N me depende	in "The I Bruce ence of

NWP center	Method of Assigning Observation Error	Thinning Procedure	Re-assignment of Height
BoM	The observational errors for satellite tracked winds were based on advice from data producers some years ago.	Satellite winds are thinned by means of "superobs" (optimal averaging of closely spaced observations).	No.
СМА	The observational errors of satellite tracked winds were determined in a pure empirical way some years ago.	The satellite tracked winds over land of which latitude is greater than 30 degrees of north are not used.	No.
СМС	The observational errors for satellite tracked winds were based on values used at ECMWF many years ago.	No.	No.
DWD	We are monitoring the satellite winds against the 6-hour forecast of our global NWP-model. In general the standard deviations of wind components satellite wind against model show values in the range between 3.5 and 5.0 m/s depending on the satellite/height/type of wind (IR,VIS,WV). The mean difference of wind component is mostly negative and its maximum reaches up to 2.0 m/s (zonal wind, jet region, depending on satellite). The observation errors used in the analysis are quite large. The reason for this is mainly the fact that in optimum interpolation schemes only the ratio of observation to first guess error dominates the impact of observations used. (See Table.1)	Satellite winds are thinned to the model resolution of the global model. In a vertical slab of 40 hPa for the analysis at one grid point the effective number of satellite winds used is as follows: 50 25 9 6 rest [percentage of grid points with satellite winds] 1 2 3 4 > 4 [satellite winds] -depending on actual availability and data coverage- The satellite wind nearest to the grid point is taken first, so the impact is maximal.	No.
ECMWF	The sum of observation and background errors has been estimated through study of histograms of departures between observations and short-range forecasts. The background component of these error estimates is fairly well known by other means, and can be subtracted. The observation error estimates thus obtained are inflated in an ad hoc way, in a attempt to partly compensate for the otherwise neglected effects of observation error correlation.	Before final assimilation all satellite winds are thinned to the following: - One wind per box 1.25 x 1.25 degree; - One per nearest model pressure level.	No.

Table 2. Usage of satellite winds at NWP centers

CGMS-XXVIII JPN-WP-14

NWP center	Method of Assigning Observation Error	Thinning Procedure	Re-assignment of Height
JMA	The observation errors of satellite tracked winds in our global assimilation system are determined so that the errors are comparative to the background errors of winds.	Satellite winds are thinned so that the minimum distance of the winds is 50 km. Satellite winds are rejected if any reports from radiosonde, wind profiler, AIREP, AMDAR are available within 50km.	The GMS winds are re-assigned to 200hPa if the vertical level of reported winds are higher than 200hPa. Other satellite winds are not re-assigned.
Meteo France	In a pure empirical way combining the experience of producers, what is usually done in other centres, and (mainly) through experiments studying the response of our assimilation system to the use of satellite winds. Note that INSAT has never been used, and the figures given for INSAT in Table 2 of the working paper CGMS-XXVII EUM-WP-28 are for quality control and monitoring only, not for operational use.	The above ECMWF thinning technique is used.	No.
UKMO	For winds received in SATOB code, averaged over the course of a year, on different levels: We calculate the observation minus background RMS wind component difference (RMS(O-B)) from monitoring statistics. We make the assumption that background error variances and observational error variances have about the same magnitude, so we estimate the RMS observational error by dividing the RMS(O-B) by square root of two. Values are for all satellites combined, however INSAT statistics are not used in this calculation.	The GOES winds are thinned to one in every 2 x 2 degree grid box. The wind nearest the center of the box is chosen. Other satellite winds are not thinned, however if we start to assimilate EUMETSAT BUFR coded winds, these will also be thinned.	No.