

CGMS-38 EUM-WP-33 v2, 3 November 2010 Prepared by EUMETSAT Agenda Item: WGII/9 Discussed in WGII

SATELLITE-BASED OCEAN PRODUCTS PROVIDED BY EUMETSAT

This paper provides an overview of satellite-based ocean products provided by EUMETSAT. It tables the specifications of the currently operational and planned products for e.g., Sea Surface Temperature, Sea Surface Winds, Sea Ice and Sea Surface Height making reference to related operational needs. Details of the general and programmatic context and of several key projects are provided in working paper CGMS38-WP16.

CGMS to take note

Satellite-based ocean products provided by EUMETSAT

1 Introduction

Being a user-driven organization, EUMETSAT's objective is to ensure that essential data and operational products of high quality are made available in a sustained manner to the widest possible user community. Currently EUMETSAT is providing already a broad variety of operational and pre-operational satellite-based ocean products with the related operational services. The bulk of the user products are produced by the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF). In addition, satellite altimetry products are procured for now and in the future in the Jason-2 and Jason-3 program. The purpose of this document is to provide an overview of the characteristics of products and services.

2 The EUMETSAT Ocean and Sea Ice Satellite Application Facility

The EUMETSAT OSI-SAF (www.osi-saf.org) is dedicated to the common requirements of meteorology and oceanography for comprehensive information on the oceanatmosphere interface. The core objective of the OSI SAF is the operational near realtime production, distribution and archiving of a coherent set of information characterising the ocean surface and the energy fluxes through the surface. It provides sea-surface temperature fields, radiative fluxes, wind vectors and sea ice products. Every operational product is delivered with a user manual and a report on product validation. Products are routinely monitored on availability, stability and quality. The range of products areas has been set to take into account different domains and spatial scales of application: The Global Oceans (GLB), the Atlantic Ocean at low and mid latitude (ATL) (including Western most part of Indian Ocean), The Atlantic/Arctic High latitudes (AHL), and the Nearest Atlantic and European seas (NAR).

2.1 Sea Surface Temperate products

"Sea Surface Temperature (SST) at the ocean atmosphere interface is a fundamental variable for understanding, monitoring and predicting fluxes of heat, momentum and gas at a variety of scales from local to global climate that determine complex interactions between atmosphere and ocean." [Donlon et al. 2010]. The OSI SAF produces core level 2 products on the basis of the SEVIRI (Meteosat Second Generation) and AVHRR (EUMETSAT Polar System, NOAA) instruments. Table 1 summarizes the characteristics of the products.

reference	Product Name	Product acronym	Characteristics and Methods	Input Satellite data	Dissemination Means	Format	Timeliness	spatial coverage	generation frequency	spatial resolution
OSI-201	GLB MetOp Se Surface Temperature	a GLB SST	underskin temperature (°K) multispectral algorithm	MetOp/ AVHRR	EUMETCast FTP UMARF	GRIB NetCDF L3P and L3P core	6 h	Global	12 h for each satellite	0.05°
OSI-202	NAR Sea Surfac Temperature	e NAR SST	underskin temperature (°K) multispectral algorithm	NOAA, MetOp, NPP/ VIIRS	EUMETCast FTP UMARF	GRIB NetCDF L3P and L3F core	4 h	Northern Atlantic and Regional sea	d S 6 h	2 km
<u>OSI-203</u>	AHL Sea Surfac Temperature	e AHL SST	underskin temperature (°K) multispectral algorithm	AVHRR, NPP/ VIIRS	EUMETCast FTP UMARF	GRIB NetCDF HDF5	3 h 30	Atlantic High Latitude	12 h	5 km
OSI-204	Full resolution MetOp Se Surface Temperature metagranules	m a MGR SST	underskin temperature (°K multispectral algorithm). MetOp/ AVHRR	FTP	NetCDF L2P	4 h	Global	Continuous	1 km
OSI-205	Full resolutic NOAA Se Surface Temperature	n a FRN SST	underskin temperature (°K) multispectral algorithm	I. NOAA/ EARS AVHRR	FTP	NetCDF HDF5	3 h	North of 50N	Continuous	1 km
OSI-206	METEOSAT Se Surface Temperature	a MET SST	underskin temperature (°K multispectral algorithm underskin). MET	EUMETCast FTP UMARF	GRIB NetCDF L2P	3 h	60S-60N 60W-60E	1h (0.05°
OSI-207	GOES-E Se Surface Temperature	a GOES-E SS	temperature (°K Tmultispectral algorithm	i). GOES-E	EUMETCast FTP UMARF	GRIB NetCDF L2P	3 h	60S-60N 135W-15W	1 h	0.05°

Table 1 The EUMETSAT OSI SAF sea surface temperature products.

The NetCDF (L2P and L3P) products comply with the standards set by the GHRSST community. These standards have recently been updated as GDS2.0 and will also be used for Sentinel-3 products in close cooperation with EUMETSAT central facilities. A L2P product based on IASI SST retrievals is in development.

2.2 Surface flux products

"Flux products quantifying exchanges between ocean and atmosphere are needed for forcing models, understanding ocean dynamics, investigating the ocean's role in climate, and assessing coupled models." [Fairall et al., 2010]. In addition, to the SST products for the determination of the ocean-atmosphere heat flux the OSI SAF produces level 2 products for the downward longwave irradiance and the short-wave solar irradiance. Table 2 summarizes the characteristics of the products.

reference	Product Name	Product acronym	Characteristics Methods	andi	nput S lata	atellite	Dissemination Means	Format	Timeliness	spatial coverage	generation frequency	spatial resolution
	AHL Downwar	d					EUMETCast	GRIB		Atlantic		
OSI-301	Longwave Irradiance	AHL DLI	W/m ² . parameterization	Bulk	NOAA/ A MetOp/ A	AVHRR AVHRR	,FTP UMARF	NetCDF HDF5	3 h 30	North of 50N	12 h	5 km
OSI-302	AHL Short-wav Solar Irradiance	e AHL SSI	W/m². pł parameterization	nysical	NOAA/ A MetOp/ A	AVHRR AVHRR	EUMETCast ,FTP UMARF	GRIB NetCDF HDF5	3 h 30	Atlantic North of 50N	12 h	5 km
OSI-303	METEOSAT Downward Longwave Irradiance	MET DLI	W/m ² . parameterization	Bulk	MET		EUMETCast FTP UMARF	GRIB NetCDF	2 h	60S-60N 60W-60E	1 h + daily ntegrated	0.05°
OSI-305	GOES-E Downward Longwave Irradiance	GEOS-E DLI	W/m ² . parameterization	Bulk	GOES-E	:	EUMETCast FTP UMARF	GRIB NetCDF	2 h	60S-60N 135W-15W	1 h + daily integrated	0.05°
OSI-304	METEOSAT Short-wave Solar Irradiance	e MET SSI	W/m². p parameterization	hysical	МЕТ		EUMETCast FTP UMARF	GRIB NetCDF	2 h	60S-60N 60W-60E	1 h + daily ntegrated	0.05°
OSI-306	GOES-E Short- wave Sola Irradiance	arGOES-E SSI	W/m². p parameterization	hysical	I GOES-E		EUMETCast FTP UMARF	GRIB NetCDF	2 h	60S-60N 135W-15W	1 h + daily integrated	0.05°

Table 2 The EUMETSAT OSI SAF sea surface flux products.

2.3 Sea surface vector wind products

"Ocean surface vector winds (OSVW) are used to estimate momentum transfer (surface stress) between the atmosphere and ocean, and are critically important for determining the large scale ocean circulation and transport." [Bourassa et al 2010]. The OSI SAF is producing state of the art level 2 products based on the ASCAT (EUMETSAT Polar System) and Seawinds scatterometer instruments. Table 3 summarizes the characteristics of the products.

Table 3 The EUMETSAT OSI SAF ocean surface vector wind products.

Reference	Product Name	Product acronym	Characteristics and Methods	Input Satellite data	Dissemination Means	Format	Timeliness	spatial coverage	generation frequency	spatial resolution
OSI-101	SeaWinds 25km Wind	SeaW25	wind speed (m/s and directio (degrees). Sigma0's an swath winds	s) n d SeaWinds	EUMETCast FTP UMARF	BUFR, NetCDF	3 h 30	Global	Continuous	25 km
OSI-110	SeaWinds 100km Wind	SeaW100	wind speed (m/s and directio (degrees). Sigma0's an swath winds	s) n d SeaWinds	EUMETCast FTP UMARF	BUFR, NetCDF	3 h 30	Global	Continuous	100 km
OSI-102	ASCAT 25 k Winds	m ASCAT25	wind speed (m/s and directio (degrees). Sigma0's an swath winds	s) n d ASCAT	EUMETCast FTP UMARF	BUFR, NetCDF	2 h 45	Global	Continuous	25 km
OSI-103	ASCAT 12.5 km Winds	ASCAT12	wind speed (m/s and directio (degrees). Sigma0's an swath winds	s) n d ASCAT	EUMETCast FTP UMARF	BUFR, NetCDF	2 h 45	Global	Continuous	12.5 km
OSI-104	ASCAT coastal Wind	IS ASCAT12+	wind speed (m/s and directio (degrees). Sigma0's an swath winds	s) n d ASCAT	EUMETCast FTP UMARF	BUFR, NetCDF	2 h 45	Global	Continuous	12.5 km

The operational production of the OSI SAF SeaWinds product has stopped in November 2009 with the end of lifetime of the QuikSCAT mission.

The ASCAT Coastal Wind Product (OSI-104) is still in development, see also section 3.

2.4 Sea Ice Products

"Sea ice data from satellites represent one of the longest earth observation records from space. The variations in temperature, emissivity and reflectivity of sea ice and the differences compared to the surrounding open ocean make it an ideal application of remote sensing. Several techniques and instruments have been developed and successfully utilized and today it is impossible to imagine operational sea ice monitoring and analysis without satellite data." [Breivik et al, 2010]. The OSI SAF is producing state of the art products for both the Arctic and Antarctic. Table 3 summarizes the characteristics of the products.

reference	Product Name	Product acronym	Characteristics and Methods	nput Satellite data	Dissemination Means	Format	Time liness	spatial coverage	generat ion frequer cy	spatial resolution
OSI-401	Global Sea I Concentration	ce GBL SIC	Fractional ice cover in percentage. Multisenso analysis.	n rSSM/I, SSMIS,	EUMETCast FTP UMARF	GRIB NetCDF HDF5	5 h	Global	1 day	10km
OSI-402	Global Sea Ice Edg	e GBL SIE	Discrimination Open ice/Closed ice/No ice. Multisensor analysis	SSM/I, SSMIS, ASCAT, AMSR	EUMETCast FTP UMARF	GRIB NetCDF HDF5	5 h	Global	1 day	10 km
OSI-403	Global Sea Ice Typ	e GBL SIT	Discrimination First year, Multi year. Multisensor analysis	SSM/I, SSMIS, ASCAT, AMSR	EUMETCast FTP UMARF	GRIB NetCDF HDF5	5 h	Global	1 day	10 km
OSI-404	Global Sea I Emissivity	ce GBL SIEM	Multisensor analysis	SSM/I, SSMIS, ATOVS, AMSR	EUMETCast FTP UMARF	GRIB NetCDF HDF5	5 h	Global	1 day	10 km
OSI-405	Low Resolution Se Ice Drift	aGBL LI SID	km. Single and multi senso analysis. RDisplacement after 48 hours	rASCAT, AMSR, SSM/I, SSMIS	EUMETCast FTP UMARF	NetCDF (GRIB requested)	if 6 h	Global	1 day	62.5 km
OSI-406	Regional Sea I Edge	ce REG SIE	discrimination Oper Ice/closed Ice/no Ice Multisensor analysis	AVHRR VIIRS	EUMETCast FTP UMARF	GRIB NetCDF HDF5	3 h 30	Regional	12 h	1.5 km
OSI-407	Medium Resolution	onGBL M SID	Km Single sensor analysis. RDisplacement after 24 hours	AVHRR	EUMETCast FTP UMARF	NetCDF (GRIB requested)	if 6 h	Global	1 day	20 km
OSI-408	Global AMSRE S	GBL eaAMSR SI	C Fractional ice cover i percentage.	n AMSR	EUMETCast FTP UMARF	GRIB NetCDF HDF5	5 h	Global	1 day	10km
Osi-409	Global reprocessed Sea lo Concentration	e GBL RE SIC	PFractional ice cover in percentage	∩SMMR, SSM/I	FTP	NetCDF	Offline	Global	1 day	10km

Table 4 The EUMETSAT OSI SAF sea ice products.

Mission	Prod Name	Param.	Spacing of observ.	Source	Access point	Format
Jason-2	OGDR	Global SWH, wind speed, Height	6 km along track	EUMETSAT+ NOAA	EUMETCast/ NOAA DDS	netCDF
Jason-2	OGDR- BUFR				EUMETCast/ NOAA DDS/ GTS	BUFR
Jason-2	OGDR- SSHA				EUMETCast/ NOAA DDS	netCDF
Jason-1	OSDR	Global SWH, wind speed	6 km along track	CNES	EUMETCast/ AVISO ftp / NASA JPL ftp	netCDF
				Meteo- France (encoding)	EUMETCast/ GTS	BUFR
ENVISAT	RA_ WWV	Global SWH, wind speed	7 km along track	ESA	ESRIN ftp/ GTS (expected soon)	ENVISAT format/ BUFR

Table 5 Altimeter products in near real time.

3 Altimetry products in near real time

"Observations of the surface topography – together with complementary in situ observations collected within the ocean by systems such as Argo – are central to understanding the dynamics of the global oceans, assessing their role in climate, and sustaining a robust operational forecast capability." [Wilson et al. 2010]. Within the Jason-2 program EUMETSAT together with NOAA is providing the Operational Geophysical Data Records (level 2 products) in near real time, see Table 5. It has to be noted that the OGDR services are of key importance for the operational sea state monitoring as for example done with coupled wave atmosphere models.

The Operation Service Specification for the Jason-3 mission is currently in draft, but in essence the product suite as provided from the Jason-2 mission will be continued.

4 **Product developments**

4.1 Coastal products

In recent years, in a general sense, there has been strong emphasis in satellite oceanography to process the observational data closer to the coast. In many cases several instrumental and coastal physical constraints have to be dealt with. Examples are the wind product (OSI-104) has given in table 3, and new re-tracking algorithms that are developed for the altimetric measurements. These activities will results in updated or dedicated products.

4.2 Climate Products.

The enhanced need for climate monitoring drives several already started or planned re processing activities within the EUMETSAT programs and in the OSI SAF with the goal of providing dedicated climate products. It is beyond this paper to describe this in detail.

5 Third Party products

EUMETSAT together with partners and the OSI SAF are heavily involved to relay now and in the near future near real time products from third party missions to its user community. For example Table 5 provides details of the altimeter products which are redistributed via EUMETCAST.

6 Conclusions

EUMETSAT is providing a broad variety of operational and pre-operational satellitebased ocean products with the related operational services. For most ocean variables the product services comprise level 1 and level 2 products. Dissemination is dominantly done via EUMETCAST, GTS and FTP. The current collection of products includes those of the highest priority for NWP, marine meteorology and operational oceanography with realistic ocean models only, e.g., sea surface temperature, ocean surface vector winds, sea surface heights and sea ice products.

References

Bourassa M., Stoffelen A., Bonekamp H., Chang P., Chelton D., Courtney J., Edson R, Figa J., He Y., Hersbach H., Hilburn K., Jelenak Z., Kelly K., Knabb R., Lee T., Lindstrom E., Liu W., Long D., Perrie W., Portabella M., Powell M., Rodriguez E., Smith K., Swail V., and Wentz F., 'Remotely sensed winds and wind stresses for marine forecasting and ocean modeling' in Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, 2010.

Breivik, L.-A., Carrieres, T., Eastwood, S., Fleming, A., Girard-Ardhuin, F., Karvonen, J., Kwok, R, Meier, W.N., Mäkynen, M., Pedersen, L. T., Sandven, S., Similä, M., and Tonboe, R., "Remote sensing of sea ice" inProceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, 2010.

Donlon, C., Casey, K., Gentemann, C., Le Borgne, P.,Robinson, I., Reynolds, R., Merchant, C., Llewellyn-Jones, D., Minnett, P., Piolle, J.-F., Cornillon, P., Rayner, N., Brandon, T., Vazquez, J., Armstrong, E., Beggs, H.,Barton, I., Wick, G., Castro, S., Hoeyer, J., May, D.,Arino, O., Poulter, D., Evans, R., Mutlow, C., Bingham, A. and Harris, A., "Successes and Challenges for the Modern Sea Surface Temperature Observing System", in Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, 2010.

Fairall, C., Barnier, B., Berry, B., Bourassa, M., Bradley, F., Clayson, C.4, de Leeuw, G., Drennan, W., Gille, S., Gulev, S., Kent, E., McGillis, W., Ryabinin, V., Smith, S., Weller, R., Yelland, M., and Zhang, H.-M., "Observations to Quantify Air-Sea Fluxes and Their Rolein Climate Variability and Predictability" in Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, 2010.

Wilson, S., Parisot, F., Escudier, P., Fellous, J-L., Benveniste, J., Bonekamp, H., Drinkwater, M., Fu, L., Jacobs, G., Lin, M., Lindstrom, E., Miller, L., Sharma, R., and Thouvenot, E., "The Ocean Surface Topography Constellation: The Next 15 year in Satellite Altimetry", in Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, 2010.