CGMS-XXVII WMO WP-10 Prepared by WMO Agenda item G.2

WMO CODE FORM CHANGES

(Submitted by WMO)

Summary and purpose of document

There will be a meeting of the Expert Team on Evolution of Data Formats in Monterey, California, USA 4-9 October 1999. The following documents are input for discussion at the Monterey meeting and are included as information for CGMS Members who will not be attending the meeting.

ACTION PROPOSED

The meeting is invited to note the information contained in this document.

- Appendices: A. Aspects o a Standard Data Format For Exchange of Pixel Based Satellite Products
 - B. Representation Of Quikscat Scatterometer Data In BUFR
 - C. Representation Of Geostationary Satellite Radiance Data In BUFR
 - D. Satellite Derived Wind Computation Method In BUFRr

ASPECTS OF A STANDARD DATA FORMAT FOR EXCHANGE OF PIXEL BASED SATELLITE PRODUCTS

(Submitted by EUMETSAT)

Summary and Purpose of Document

There is a move towards satellite products being generated at increasingly higher resolution, even to the extent of pixel based products. This document describes some of the aspects of the use of the existing WMO binary data representation forms for the exchange of these high resolution satellite products. The requirements of an appropriate code form are identified, and the advantages and disadvantages of the existing forms are discussed. Finally, some potential modifications to the existing code forms, which would facilitate their use for satellite products, are described.

Action Proposed

The meeting is invited to consider the issues raised in this document, and to propose an appropriate method for the representation of high resolution satellite products. If changes to the existing code forms are necessary, the meeting is invited to prepare a suitable proposal for CBS.

Introduction

1. This paper concerns the choice of an appropriate code form for the representation of satellite products.

2. A typical satellite product contains data from a number of processing segments, each containing many pixels, and each considered as a separate, independent observation. Each observation typically contains many elements (100+), containing information about the generating center, spacecraft, location, time, computation method, quality control (critical) ... However, as the processing segments get smaller, the BUFR data begins to contain a vast number of observations. If one considers the case of a pixel based cloud mask or albedo product, then the choice of code form becomes unclear. BUFR can still be used, but the number of bulletins required becomes large and the memory requirements for encoding and decoding the data become significant. It is clear that GRIB can be used for satellite image data. GRIB2 might offer an alternative for such high resolution satellite products, if it is defined appropriately.

3. The data representation form used to represent this type of data needs to be able to handle irregularly spaced data with multiple parameter values per observation. It needs to allow the use of associated values such as quality control data as a addendum. It should also support efficient compression and be widely adopted by both the data provider and user communities.

Advantages of GRIB

4. GRIB was designed for gridded field type data, where a few parameters occur at every grid point of a clearly defined grid. It allows for efficient compression of data, and many centers are experienced in decoding and encoding GRIB. Furthermore, it is clear that GRIB can be and is used for storing satellite image data, as in MARS at ECMWF, although this relies on the use of the optional section 2.

Disadvantages of GRIB

5. Some of the short comings of GRIB Edition 1 for encoding satellite derived products have been identified in the report of the Expert Team on the Development of Edition 2 of WMO GRIB Code (Silver Spring, USA, 2-5 December 1997). The principle points can be summarized as follows:

• Lack of multiple parameters.

Satellite products have many elements per observation (typically100+) and this would require 100+ GRIB messages to hold the product. This is of course possible, but is unwieldy.

• Lack of missing values.

The coverage of satellite products typically has many data void regions, such as the gaps which would be present in a clear sky radiance product in cloud filled regions. There is no way to represent missing values in the current GRIB edition.

• No scope for associated values.

There is no way to append associated data, such as quality control information or statistical information, to the data in a GRIB message later in the processing.

• No WMO standard.

The fact that there is no standard WMO format for the representation of satellite imagery products in itself leads to a proliferation of various formats and practices being adopted by different centers.

Advantages of BUFR

6. BUFR is already in use for satellite products and is the *de facto* standard for new satellite products. BUFR is able to handle many elements to each observation and does not need these observations on any particular grid. The use of associated data such as quality control information and statistics is fully supported.

Disadvantages of BUFR

7. Each pixel or segment is treated as a separate observation (or subset) and so many subsets are needed. The section 3 descriptor allows only 2 octets to store the number of subsets, hence only 65,535 subsets can be stored per BUFR message. Since a typical albedo product[†], for instance, would contain about 6,000,000 pixels, something like 100 BUFR messages would be required per product. This limit is important because it goes some way towards imposing a constraint on how much memory would be required to decode and encode data. It can, however, be circumvented, by defining each subset to contain repeated sets of observations from multiple pixels. Although this means there would be less overhead in the number of bulletins required, each bulletin would require more memory for encoding and decoding, as described in the following paragraph.

8. The commonly used software BUFREX from ECMWF allocates memory based on Total number of elements = the number of descriptors per subset * the number of subsets. Then 4 bytes are allocated per element into which the decoded information can be written. The use of Fortran and therefore static memory management means that a worst case, maximum chunk of memory must be set aside for decoding. Considering the example of the albedo data, we have 65,535 subsets, each with 30 elements, meaning a total of 1,966,050 elements, requiring about 7.8 Mb of memory to be available. If the clear sky radiance were produced at pixel resolution, then each subset would have 246 elements, meaning a total of 16,121,610 elements, requiring about 64.5 Mb of memory.

Potential for GRIB 2

9. The report of the Expert Team on the Development of Edition 2 of WMO GRIB Code clearly identified functional requirements of GRIB2, in order to make it widely applicable and to some extent "future proof". If these are met by GRIB2, and the short comings of GRIB edition 1 discussed above are addressed, then GRIB2 could be the appropriate solution for representing satellite data.

Recommendation and Conclusion

10. The most important goal is the definition of a standard format for the representation of satellite products, especially those at a high resolution.

11. The most pragmatic approach would seem to be the modification of the definition of BUFR to this end. This might be achieved by introducing a new section containing data and descriptors, which are valid for all subsets in the bulletin, for example. Although this would not effect the size of the compressed data significantly, it would make a decoder with less demanding memory requirements easier to make. A constraint on memory could also be

[†] Tables 1, 2 and 3 show the details of the descriptors used locally by Eumetsat to encode the Surface Albedo product in BUFR. Table 1 contains the expanded descriptor list, as per Section 3. Table 2 contains the local code tables, which were introduced. Table 3 defines the local BUFR Table B entries which were introduced.

achieved by limiting the product of the number of subsets and the number of expanded descriptors per subset in BUFR. The problems of memory usage can, to a certain extent, be mitigated by the use of dynamic memory management in the application software. Although this does not solve the problem, it does mean that no more memory than that which is actually required is allocated to the process.

12. A second possibility is the modification of the definition of GRIB2 where necessary to meet the needs of the type of data in question. This may prove to be the least invasive approach, since GRIB2 is still not formally settled. The main issues are those of the irregular spacing of data, and of multiple parameter values per grid point.

13. A third possibility is the development and use of an entirely new code form for the representation of segmented and pixel based satellite derived products. Although this would be a significant undertaking, it would provide the opportunity to define a bespoke code form, fully able of handle the data. It would also remove the need to modify the definitions of BUFR or GRIB2.

Table B entry	Data element encoded
001007	METEOSAT ID
001031	GENERATING CENTRE
002020	331
004001	YEAR OF START
004043	DAY OF START
004001	YEAR OF END
004043	DAY OF END
004004	PRODUCT TIME HR
004005	PRODUCT TIME MIN
004006	PRODUCT TIME SEC
049001	NUMBER OF PRODUCTS
004043	ACTUAL NUMBER OF DAYS
049002	SOFTWARE VERSION
049003	SOFTWARE PATCH LEVEL
049004	DAILY INTEGRATED DHR
049005	DIRECTIONAL HEMISPHERICAL REFLECTANCE
049006	OVERALL PRODUCT QUALITY FLAG
049007	NUMBER OF SOLUTIONS
049008	NUMBER OF INPUT SLOTS
049009	SURFACE INDEX PARAMETER
049010	ATMOSPHERIC OPTICAL INDEX
049011	SURFACE REFLECTIVITY INTENSITY
049012	STANDARD DEVIATION OF R0
049013	STANDARD DEVIATION OF R0 DURING ACCUMULATION PERIOD
049014	NUMBER OF DAYS AVAILABLE TO DERIVE THE PRODUCT
049015	BEST DAY OF THE TIME ACCUMULATION PERIOD
049016	COST OF THE ATMOSPHERIC SCATTERING MODEL
049017	COST OF THE DATA CONSISTENCY MODEL
005001	LATITUDE
006001	LONGITUDE

Table 1: Sequence of BUFR Table B entries used for Meteosat Surface Albedo product

Table 2: Local Code Tables Used To Encode Meteosat Surface Albedo Product

049006	0005	0000 01 0001 01 0002 01 0003 01 0007 01	NO VALID SAMPLES IN THE PERIOD NO LIKELY DAY
049007	0009	0001 01 0002 01 0003 01 0004 01	NUMBER OF SOLUTIONS 41 AND MORE
049008	0009	0001 01 0002 01 0003 01 0004 01 0005 01 0006 01 0007 01	INPUT SLOTS 11 OR LESS INPUT SLOTS 12 TO 13 INPUT SLOTS 14 TO 15 INPUT SLOTS 16 TO 17 INPUT SLOTS 18 TO 19 INPUT SLOTS 20 TO 21
049009	0016	0001 01 0002 01 0003 01 0004 01 0005 01 0006 01 0007 01 0009 01 0010 01 0011 01 0012 01 0013 01 0014 01	ROHS 0.15 / THETA -0.20 / K 1.00
049010	0005	0001 01 0002 01 0003 01	ATMOSPHERIC OPTICAL INDEX 0.2 ATMOSPHERIC OPTICAL INDEX 0.4 ATMOSPHERIC OPTICAL INDEX 0.6 ATMOSPHERIC OPTICAL INDEX 1.0 MISSING VALUE

Table B					
entry	Description	Туре	S	0	W
049001	MSA - NUMBER OF PRODUCTS	NUMERIC	0	0	24
049002	MSA - VERSION	NUMERIC	0	0	10
049003	MSA - PATCH LEVEL	NUMERIC	0	0	7
049004	MSA - DAILY INTEGRATED DHR	NUMERIC	3	0	10
049005	MSA - DIRECTIONAL HEMISPHERICAL REFLECTANCE	NUMERIC	3	0	10
049006	MSA - OVERALL PRODUCT QUALITY FLAG	CODE TABLE	0	0	3
049007	MSA - NUMBER OF SOLUTIONS	CODE TABLE	0	0	4
049008	MSA - NUMBER OF INPUT SLOTS	CODE TABLE	0	0	4
049009	MSA - SURFACE INDEX PARAMETER	CODE TABLE	0	0	5
049010	MSA - ATMOSPHERIC OPTICAL INDEX	CODE TABLE	0	0	3
049011	MSA - SURFACE REFLECTIVITY INTENSITY	NUMERIC	3	0	10
049012	MSA - STANDARD DEVIATION OF R0	NUMERIC	3	0	10
049013	MSA - STANDARD DEVIATION OF RO DURING ACCUMULATION PERIOD	NUMERIC	3	0	10
049014	MSA - NUMBER OF DAYS AVAILABLE TO DERIVE THE PRODUCT	NUMERIC	0	0	5
049015	MSA - BEST DAY OF THE TIME ACCUMULATION PERIOD	NUMERIC	0	0	5
049016	MSA - COST OF THE ATMOSPHERIC SCATTERING MODEL	NUMERIC	3	0	10
049017	MSA - COST OF THE DATA CONSISTENCY MODEL	NUMERIC	3	0	10

Table 3: Local Table B entries used for Meteosat Surface Albedo product

REPRESENTATION OF QUIKSCAT SCATTEROMETER DATA IN BUFR

(Submitted by ECMWF)

Summary and Purpose of Document

NASA's QuikScat ocean-viewing satellite was launched on 19 June 1999 and has a scatterometer radar instrument to be used in mapping winds over the ocean. This document introduces the additional table entries required to encode the data in BUFR.

Action proposed

The meeting is invited to consider the sample template and prepare a proposal for approval by CBS.

PROPOSAL

Firstly, the QuikScat satellite needs to have a number allocated to it in the COMMON CODE TABLE C-5, Satellite identifier 281 is proposed as it is the number being used in the development of software and test data.

The QuikScat data should be represented with one Table D entry: 312026

These are the sequences needed for BUFR Table D:

312026	301046 301011 301023 312031 101004 312030 021110 301023 321027 021111 301023 321027 021112 301023 321027 021113 301023 321027
301046	001007 001012 002048 021119 025060 202124 002026 002027 202000 005040
312030	201130 202129 011012 202000 201000 011052 201135 202130 011011 202000 201000 011053 021104

312031	005034 006034 021109 011081 011082 021101 021102 021103
321027	021118 202129 201132 002112 201000 201131 002111 201000 202000 002104 021105 021106 021107 021114 021115 021116 008018 021117

Table B new entries required

	ALONG TRACK ROW NUMBER	NUMERIC	0	0	11
	CROSS TRACK CELL NUMBER		0	0	7
008018	SEAWINDS LAND/ICE SURFACE	FLAG TABLE	0	0	17
	TYPE				
011052	FORMAL UNCERTAINTY IN WIND	M/S	2	0	14
	SPEED		_	_	
011053	FORMAL UNCERTAINTY IN WIND	DEGREE TRUE	2	0	15
	DIRECTION		_	_	
011081	MODEL WIND DIRECTION AT	DEGREE TRUE	2	0	16
	10 M	,	_	_	
	MODEL WIND SPEED AT 10 M	M/S	2	0	13
021101	NUMBER OF VECTOR	NUMERIC	0	0	3
	AMBIGUITIES				
021102	INDEX OF SELECTED WIND	NUMERIC	0	0	3
	VECTOR				
021103	TOTAL NUMBER OF SIGMA-0	NUMERIC	0	0	5
	MEASUREMENTS				
021104	LIKELIHOOD COMPUTED FOR	NUMERIC	3	-30000	15
	SOLUTION				
021105	NORMALIZED RADAR CROSS	dB	2	-10000	14
	SECTION				
021106	Kp VARIANCE COEFFICIENT	NUMERIC	3	0	14
	(ALPHA)				
021107	Kp VARIANCE COEFFICIENT	NUMERIC	8	0	16
	(BETA)				
021109	SEAWINDS WIND VECTOR CELL	FLAG TABLE	0	0	17
	QUALITY				
021110	NUMBER OF INNER-BEAM	NUMERIC	0	0	6
	SIGMA-0 (FORWARD OF SATELLI	TE)			
021111	NUMBER OF OUTER-BEAM	NUMERIC	0	0	6

CGMS-XXVII/WMO WP 10, APPENDIX B, p. 4

SIGMA-0 (FORWARD OF SATELLITE)			
021112 NUMBER OF INNER-BEAM NUMERIC	0	0	6
SIGMA-0 (AFT OF SATELLITE)			
021113 NUMBER OF OUTER-BEAM NUMERIC	0	0	6
SIGMA-0 (AFT OF SATELLITE)			
021114 Kp VARIANCE dB	3	-140000	18
COEFFICIENT (GAMMA)			
021115 SEAWINDS SIGMA-0 QUALITY FLAG TABLE	0	0	17
021116 SEAWINDS SIGMA-0 MODE FLAG TABLE	0	0	17
021117 SIGMA-0 VARIANCE NUMERIC	2	0	16
QUALITY CONTROL			
021118 ATTENUATION CORRECTION dB	2	-10000	14
ON SIGMA-0			
021119 WIND SCATTEROMETER GEOPHYSI CODE TABLE	0	0	6
CAL MODEL FUNCTION			

New entries in existing Code Table 002048: Satellite sensor indicator

Add two new entries:

Code figure Meaning 7 NSCAT 8

SEA WINDS

Flag Table 008018

Bit number Meaning

LAND IS PRESENT
SURFACE ICE MAP INDICATES ICE IS PRESENT
RESERVED
ICE MAP DATA NOT AVAILABLE
ATTENUATION MAP DATA NOT AVAILABLE
RESERVED
MISSING VALUE

Flag Table 021109

Bit Meaning

number

1 NOT ENOUGH GOOD SIGMA-0 AVAILABLE FOR WIND RETRIEVAL
2 POOR AZIMUTH DIVERSITY AMONG SIGMA0- FOR WIND RETRIEVAL
3-7 RESERVED
8 SOME PORTION OF WIND VECTOR CELL IS OVER LAND
9 SOME PORTION OF WIND VECTOR CELL IS OVER ICE
10 WIND RETRIEVAL NOT PERFORMED FOR WIND VECTOR CELL
11 REPORTED WIND SPEED IS GREATER THAN 30 M/S
12 REPORTED WIND SPEED IS LESS THAN OR EQUAL TO 3 M/S
13-16 RESERVED
ALL 17 MISSING VALUE
Flag Table 021115

Bit Meaning

number

1 SIGMA-0 MEASUREMENT IS NOT USABLE

- 2 SIGNAL TO NOISE RATIO IS LOW
- 3 SIGMA-0 IS NEGATIVE
- 4 SIGMA-0 IS OUTSIDE OF ACCEPTABLE RANGE
- 5 SCATTEROMETER PULSE QUALITY
- IS NOT ACCEPTABLE
- 6 SIGMA-0 CELL LOCATION ALGORITHM DOES NOT CONVERGE
- 7 FREQUENCY SHIFT LIES BEYOND THE RANGE OF THE X FACTOR TABLE
- 8 SPACECRAFT TEMPERATURE IS BEYOND
- CALIBRATION COEFFICIENT RANGE
- 9 NO APPLICABLE ATITUDE RECORDS WERE FOUND FOR THIS SIGMA-0 10 INTERPOLATED IPHEMEORIS DATA ARE NOT ACCEPTABLE FOR THIS SIGMA-0
- 11-16 RESERVED
- All 17 MISSING VALUE

Flag Table 021116

Bit Meaning number

1	CALIBRATION/MEASUREMENT PULSE FLAG (1)
2	CALIBRATION/MEASUREMENT PULSE FLAG (2)
3	OUTER ANTENNA BEAM
4	SIGMA-0 CELL IS AFT OF SPACECRAFT
5	CURRENT MODE (1)
6	CURRENT MODE (2)
7	EFFECTIVE GATE WIDTH - SLICE RESOLUTION (1)
8	EFFECTIVE GATE WIDTH - SLICE RESOLUTION (2)
9	EFFECTIVE GATE WIDTH - SLICE RESOLUTION (3)
10	LOW RESOLUTION MODE - WHOLE PULSE DATA
11	SCATTEROMETER ELECTRONIC SUBSYSTEM B
12	ALTERNATE SPIN RATE - 19.8 RPM
13	RECEIVER PROTECTION ON
14	SLICES PER COMPOSITE FLAG(1)
15	SLICES PER COMPOSITE FLAG(2)
16	SLICES PER COMPOSITE FLAG(3)
ALL 17	MISSING VALUE

Code Table 021119

Code	figure	Meaning
	0	RESERVED
	1	SASS
	2	SASS2
	3	NSCAT0
	4	NSCAT1
	5	NSCAT2
	6	QSCAT0
	7	QSCAT1
	8 -30	RESERVED
	31	CMOD1
	32	CMOD2
	33	CMOD3
	34	CMOD4
	35	CMOD5
	36-63	RESERVED
	64	MISSING VALUE

Data descriptors (unexpanded)

1 312026

Data descriptors (expanded)

Element name

Unit

1	001007	SATELLITE IDENTIFIER	CODE TABLE 1007
2	001012	DIRECTION OF MOTION OF MOVING OBSERVING	DEGREE TRUE
3	002048	SATELLITE SENSOR INDICATOR	CODE TABLE 2048
4	021119	WIND SCATTEROMETER GEOPHYSICAL MODEL FUN	CODE TABLE 21119
5	025060	SOFTWARE INDENTIFICATION	NUMERIC
6	002026	CROSS TRACK RESOLUTION	М
7	002027	ALONG TRACK RESOLUTION	М
8	005040	ORBIT NUMBER	NUMERIC
9	004001	YEAR	YEAR
10	004002	MONTH	MONTH
11	004003	DAY	DAY
12	004004	HOUR	HOUR
13	004005	MINUTE	MINUTE
14	004006		SECOND
15	005002	LATITUDE (COARSE ACCURACY)	DEGREE
16	006002	LONGITUDE (COARSE ACCURACY) ALONG TRACK ROW NUMBER CROSS TRACK CELL NUMBER	DEGREE
17	005034	ALONG TRACK ROW NUMBER	NUMERIC
18	006034	CROSS TRACK CELL NUMBER	NUMERIC
19	021109		
20	011081	MODEL WIND DIRECTION AT 10 M	
21	011082	MODEL WIND SPEED AT 10 M	M/S
22	021101	NUMBER OF VECTOR AMBIGUITIES	
23	021102	INDEX OF SELECTED WIND VECTOR	NUMERIC
24	021103	TOTAL NUMBER OF SIGMA-0 MEASUREMENTS	NUMERIC
25	011012	wind speed at 10 m	M/S
26	011052	FORMAL UNCERTAINTY IN WIND SPEED	M/S
27	011011	WIND DIRECTION AT 10 M	DEGREE TRUE

2.0	011050	DODNAL INCODERTINEY IN LIND DIDEOUTON		
28	011053	FORMAL UNCERTAINTY IN WIND DIRECTION	DEGREE TRUE	
29		LIKELIHOOD COMPUTED FOR WIND SOLUTION		
30	011012	WIND SPEED AT 10 M	M/S	
31	011052	FORMAL UNCERTAINTY IN WIND SPEED	M/S	
32	011011	WIND SPEED AT 10 M FORMAL UNCERTAINTY IN WIND SPEED WIND DIRECTION AT 10 M FORMAL UNCERTAINTY IN WIND DIRECTION	DEGREE TRUE	
33		FORMAL UNCERTAINTY IN WIND DIRECTION	DEGREE TRUE	
34	021104	LIKELIHOOD COMPUTED FOR WIND SOLUTION	NUMERIC	
35	011012	WIND SPEED AT 10 M	M/S	
36	011052	FORMAL UNCERTAINTY IN WIND SPEED	M/S	
37	011011	WIND SPEED AT 10 M FORMAL UNCERTAINTY IN WIND SPEED WIND DIRECTION AT 10 M FORMAL UNCERTAINTY IN WIND DIRECTION	DEGREE TRUE	
38	0110000	I OIGHIE OIGERGIAINIT IN WIND DIRECTION		
39	021104	LIKELIHOOD COMPUTED FOR WIND SOLUTION	NUMERIC	
40	011012	WIND SPEED AT 10 M FORMAL UNCERTAINTY IN WIND SPEED WIND DIRECTION AT 10 M	M/S	
41	011052	FORMAL UNCERTAINTY IN WIND SPEED	M/S	
42	011011	WIND DIRECTION AT 10 M	DEGREE TRUE	
43	011053	FORMAL UNCERTAINTY IN WIND DIRECTION	DEGREE TRUE	
44		LIKELIHOOD COMPUTED FOR WIND SOLUTION		
45	021110	NUMBER OF INNER-BEAM SIGMA-0 (FORWARD OF	NUMERIC	
46	005002	LATITUDE (COARSE ACCURACY)	DEGREE	
47	006002	LATITUDE (COARSE ACCURACY) LONGITUDE (COARSE ACCURACY) ATTENUATION CORRECTION ON SIGMA-0 RADAR LOOK ANGLE RADAR INCIDENCE ANGLE ANTENNA POLARISATION NORMALIZED RADAR CROSS SECTION	DEGREE	
48	021118	ATTENUATION CORRECTION ON SIGMA-0	dB	
49	002112	RADAR LOOK ANGLE	DEGREE	
50	002111	RADAR INCIDENCE ANGLE	DEGREE	
51	002104	ANTENNA POLARISATION	CODE TABLE	2104
52	021105	NORMALIZED RADAR CROSS SECTION	dB	
53	021106	Kp VARIANCE COEFFICIENT (ALPHA)	NUMERIC	
54	021107	Kp VARIANCE COEFFICIENT (BETA)	NUMERIC	
55	021114	NORMALIZED RADAR CROSS SECTION Kp VARIANCE COEFFICIENT (ALPHA) Kp VARIANCE COEFFICIENT (BETA) Kp VARIANCE COEFFICIENT (GAMMA) SEAWINDS SIGMA-0 QUALITY SEAWINDS SIGMA-0 MODE SEAWINDS LAND/ICE SURFACE TYPE SIGMA-0 VARIANCE QUALITY CONTROL NUMBER OF OUTER-BEAM SIGMA-0 (FORWARD OF	dB	
56	021115	SEAWINDS SIGMA-0 QUALITY	FLAG TABLE	21115
57	021116	SEAWINDS SIGMA-0 MODE	FLAG TABLE	21116
58	008018	SEAWINDS LAND/ICE SURFACE TYPE	FLAG TABLE	8018
59	021117	SIGMA-0 VARIANCE QUALITY CONTROL	NUMERIC	
60				
61	005002	LATITUDE (COARSE ACCURACY)	DEGREE	
62	006002	LONGITUDE (COARSE ACCURACY)	DEGREE	
63	021118	ATTENUATION CORRECTION ON SIGMA-0	dB	
64	002112	RADAR LOOK ANGLE	DEGREE	
65	002111	LATITUDE (COARSE ACCURACY) LONGITUDE (COARSE ACCURACY) ATTENUATION CORRECTION ON SIGMA-0 RADAR LOOK ANGLE RADAR INCIDENCE ANGLE ANTENNA POLARISATION	DEGREE	
66	002104	ANTENNA POLARISATION	CODE TABLE	2104
67	021105	NORMALIZED RADAR CROSS SECTION	dB	
68		Kp VARIANCE COEFFICIENT (ALPHA)	NUMERIC	
69	021107	Kp VARIANCE COEFFICIENT (BETA)	NUMERIC	
70	021114	Kp VARIANCE COEFFICIENT (GAMMA)	dB	
71	021115	SEAWINDS SIGMA-0 QUALITY	FLAG TABLE	21115
72	021116	SEAWINDS SIGMA-0 MODE	FLAG TABLE	21116
73	008018	SEAWINDS LAND/ICE SURFACE TYPE	FLAG TABLE	8018
74	021117	SIGMA-0 VARIANCE QUALITY CONTROL	NUMERIC	
75	021112	NUMBER OF INNER-BEAM SIGMA-0 (AFT OF SAT	NUMERIC	
76	005002	LATITUDE (COARSE ACCURACY)	DEGREE	
77	006002		DEGREE	
78	021118	ATTENUATION CORRECTION ON SIGMA-0	dB	
79	002112	RADAR LOOK ANGLE	DEGREE	
80	002111	RADAR INCIDENCE ANGLE	DEGREE	
81	002104		CODE TABLE	2104
82	021105	NORMALIZED RADAR CROSS SECTION	dB	
83	021106	Kp VARIANCE COEFFICIENT (ALPHA)	NUMERIC	
84	021107	Kp VARIANCE COEFFICIENT (BETA)	NUMERIC	
85	021114	Kp VARIANCE COEFFICIENT (GAMMA)	dB	
86		SEAWINDS SIGMA-0 QUALITY	FLAG TABLE	21115
87		SEAWINDS SIGMA-0 MODE	FLAG TABLE	
88	008018	SEAWINDS LAND/ICE SURFACE TYPE	FLAG TABLE	8018

CGMS-XXVII/WMO WP 10, APPENDIX B, p. 8

91 92 93	005002 006002 021118	NUMBER OF OUTER-BEAM SIGMA-0 (AFT OF SAT LATITUDE (COARSE ACCURACY) LONGITUDE (COARSE ACCURACY) ATTENUATION CORRECTION ON SIGMA-0	DEGREE DEGREE dB	
-		RADAR LOOK ANGLE	DEGREE	
95		RADAR INCIDENCE ANGLE	DEGREE	
96	002104	ANTENNA POLARISATION	CODE TABLE	2104
97	021105	NORMALIZED RADAR CROSS SECTION	dB	
98	021106	Kp VARIANCE COEFFICIENT (ALPHA)	NUMERIC	
99	021107	Kp VARIANCE COEFFICIENT (BETA)	NUMERIC	
100	021114	Kp VARIANCE COEFFICIENT (GAMMA)	dB	
101	021115	SEAWINDS SIGMA-0 QUALITY	FLAG TABLE 2	1115
102	021116	SEAWINDS SIGMA-0 MODE	FLAG TABLE 2	1116
103	008018	SEAWINDS LAND/ICE SURFACE TYPE	FLAG TABLE	8018
104	021117	SIGMA-0 VARIANCE QUALITY CONTROL	NUMERIC	

REPRESENTATION OF GEOSTATIONARY SATELLITE RADIANCE DATA IN BUFR

(Submitted by EUMETSAT)

Summary and Purpose of Document

A number of requirements for EUMETSAT's new radiance products and future Meteosat Second Generation radiance products have been identified. This document introduces the additional table entries required to encode the data in BUFR.

Action proposed

The meeting is invited to consider the proposed template and prepare a proposal for approval by CBS.

PROPOSAL

EUMETSAT currently generates radiance data from its Meteosat 5 and Meteosat 7 spacecraft. These data should be represented with a Table D entry (310015). A similar Table D entry is also required to represent the equivalent radiance data from the Meteosat Second Generation (MSG) spacecraft (310016). The MSG radiance data will come from more spectral channels and so will a slightly different Table D entry.

The proposed Table B entries for radiance spectral radiance (012075) and radiance (012076) will make the existing wrongly defined entry for radiance, 012072, redundant. Although 012072 is defined called 'radiance' its units are actually those of a spectral radiance. The scale factor for 012072 is in any case not sufficient for spectral radiance data.

The radiance data from Meteosat 5 and 7 have been exchanged between EUMETSAT and ECMWF since January 1999 on the GTS, using the descriptors given.

These are the sequences needed for BUFR Table D:

Meteosat radiance data

Meteosat Second Generation (MSG) radiance data

Cloud fraction

304032 002153

Clear sky radiance

304033 002152

Table B new entries required

012075 SPECTRAL RADIANCE	W/M**2*STER*M**(-1)	10	0	31
012076 RADIANCE	W/M**2*STER	3	0	16

SATELLITE DERIVED WIND COMPUTATION METHOD IN BUFR

(Submitted by EUMETSAT)

Summary and Purpose of Document

The descriptions of the BUFR code table entries for satellite derived wind computation method are unclear for winds observed in the water vapour channel. This paper describes a potential update to the code table to resolve this situation.

Action proposed

The meeting is invited to consider the proposed modifications to the code table, and prepare a proposal for approval by CBS.

PROPOSAL

The water vapour channel can be used to compute satellite derived winds both in cloudy regions and in clear sky regions. For this reason, separate code figures were required for the following three cases:

- Wind derived from cloud motion observed in the water vapour channel
- Wind derived from motion observed in the water vapour channel in clear air
- Wind derived from motion observed in water vapour channel (cloudy or clear air not specified)

The BUFR code table for Satellite Derived Wind Computation Method, 002023, currently contains the following entries concerning water vapour winds:

Code	Description	
Figure		
3	Wind derived from motion observed in the water vapour channel	
5	Wind derived from motion observed in the water vapour channel in clear air	
7	Wind derived from cloud motion observed in water vapour channel (cloudy or clear air	
	not specified)	

There are two problems with the descriptive text as it is. Firstly, the meaning of code figure 3 is ambiguous. Is it to be used for water vapour motion observed in cloudy air, clear air, or could it be used for both? Secondly the use of the word "cloud" in the description of code figure 7 is inconsistent with the parenthesis. There can not be cloud motion in clear air.

In an attempt to work around this ambiguity, EUMETSAT use the "not used" code figure 0 to mean "Wind derived from cloud motion observed in the water vapour channel". This is clearly not a satisfactory situation.

The following measures are suggested as a means to clarify the use of the code table:

- 1. Deprecate code figure 3.
- 2. Clarify the description of code figure 7 to say "Wind derived from motion observed in water vapour channel (cloudy or clear air not specified)".
- 3. Add a new code figure, 8, to the table to be defined as "Wind derived from cloud motion observed in the water vapour channel".