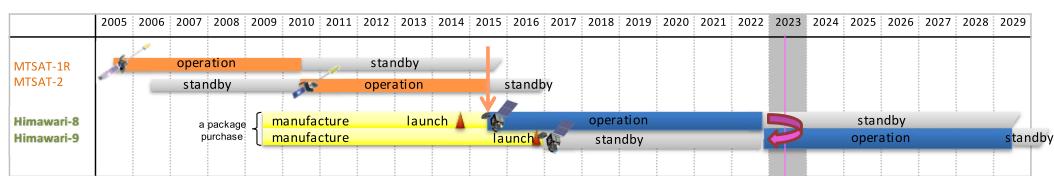


STATUS REPORT ON THE CURRENT (HIMAWARI-8/9) AND FUTURE SATELLITE (HIMAWARI-10)

Presented to CGMS-51 Plenary, agenda item 1 (JMA-WP-01)

Japan Meteorological Agency



Himawari-8/9

Himawari-8 began operation on 7 July 2015, switching over to Himawari-9 on 13 December 2022

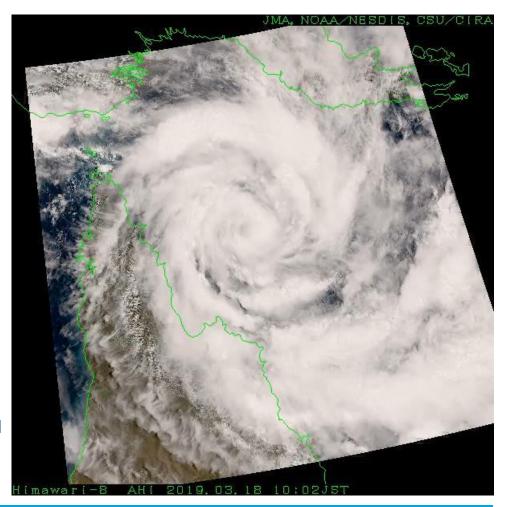
Geostationary position	Around 140.7° E	
Attitude control	3-axis stabilization	
Communication	1) Raw observation data transmission Ka-band, 18.1 - 18.4 GHz (downlink)	
	2) DCS (Data collection System) International channel 402.0 - 402.1 MHz (uplink) Domestic channel 402.1 - 402.4 MHz (uplink) Transmission to ground segments Ka-band, 18.1 - 18.4 GHz (downlink)	
	3) Telemetry and command Ku-band, 12.2 - 12.75 GHz (downlink) 13.75 - 14.5 GHz (uplink)	

Switch over from Himawari-8 to Himawari-9

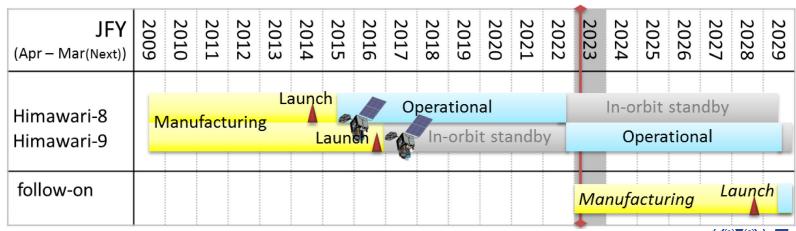
- JMA conducted the operational satellite switchover from Himawari-8 to -9 on 13 December 2022.
- The switch was almost seamless with no data discontinuity.
 There were no changes to data format or data dissemination system between Himawari-8 and Himawari-9.
- Filename for Himawari Standard Data (HSD) and NetCDF via HimawariCloud changed as:

```
HS_H08_yyyymmdd_hhnn_Bbb_cccc_Rjj_Skkll.DAT.bz2 for H-08 HSD HS_H09_yyyymmdd_hhnn_Bbb_cccc_Rjj_Skkll.DAT.bz2 for H-09 HSD The same applies to NetCDF files
```

 JMA provided parallel distribution of Himawari-9 observation data and products for several months by an additional method before the switchover (27 Sep. – 13 Dec. 2022).



HimawariRequest


- HimawariRequest was started from January 2018 in cooperation with Bureau of Meteorology (BoM), Australia.
- International service for NMHSs in Himawari-8/9 coverage area to request Target
 - Area observation(1,000 x 1,000 km area every 2.5 minutes).
- JMA expects this service to support disaster risk reduction activities in the Asia Oceania region.
- Status as of 25 May 2023
 - Registration: 22 NMHSs
 - ➤ **185** requests for TC, volcanic eruption, wildfires, etc.

HimawariRequest from BoM on 13-19 Mar. 2019

Himawari Follow-on Program

- JFY2018: JMA has started to consider the next GEO satellite (Himawari-10) program.
 - "By JFY2023 Japan will start manufacturing the Geostationary Meteorological Satellite that will be the successor to Himawari-8/9, aiming to put it into operation in around JFY2029" Japan's "Basic Plan on Space Policy" (June 2020)
 - > JMA will pursue seamless GEO satellite system by considering CGMS baseline and WMO Vision for WIGOS in 2040 to contribute the establishment of Geo-Ring observation.
- JFY2019: Worldwide Technology Trends Survey on Future Satellites/Instruments
- JFY2020: OSSE of hyperspectral IR sounder on JMA NWP systems was implemented.
- JFY2021: Internal, domestic and international user requirements had been summarized.
- JFY2022: RFI, RFP and Start of manufacturing of H-10 using supplemental budget
- JFY2028: Launch of Himawari-10
- JFY2029: Start of operation of Himawari-10

WMO Vision for WIGOS in 2040 for GEO

	Application	Satellite/Instrument
VIS/IR Imager w/ rapid repeat cycles	Cloud amount/type/top height/temperature, wind, sea/land surface temperature, precipitation, aerosols, snow cover, vegetation cover, albedo, atmospheric stability, fires, volcanic ash, sand/dust storm, convective initiation	 NOAA: GOES-16,17/ABI JMA: Himawari-8,9/AHI KMA: GK-2A/AMI CMA: FY-4A,4B/AGRI EUMETSAT: MTG-I1/FCI (2022)
Hyperspectral IR Sounder	Atmospheric temperature/humidity, wind, rapidly evolving mesoscale features, sea/land surface temperature, cloud amount/top height/temperature, atmospheric composition	 NOAA: N/A JMA: N/A KMA: N/A CMA: FY-4A,4B/GIIRS EUMETSAT: MTG-S1/IRS (2024)
Lightning Mapper	Lightning, location of intense convection, life cycle of convective systems	 NOAA: GOES-16,17/GLM JMA: N/A KMA: N/A CMA: FY-4A/LMI EUMETSAT: MTG-I1/LI (2022)
UV/VNIR Sounder	Ozone, trace gases, aerosol, humidity, cloud top height	 NASA: TEMPO (2022) JMA: N/A KMA: GK-2B/GEMS CMA: N/A EUMETSAT: MTG-S1/UVN (2024)

JMA's 10-Year Strategy Toward 2030

1. Technology Developments

- Application of latest sci & tech;
 - √ Advanced satellites, remote sensing, big data
 - ✓ NWP and other prediction tech.
 - ✓ Collaboration etc.
- Improvement of forecasts
 - ✓ Nowcast up to 1 hour
 - ✓ 12-hour forecast of localized heavy rain (stationary linear mesoscale convective systems)
 - 3-day typhoon forecast etc.

Synergy

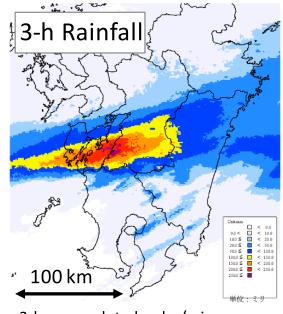
Met. Services for Better

Society

- 2. Promotion of Effective Utilization of Info./Data
- > Build environment for better usage
 - ✓ Larger data flow
 - ✓ Easier access
- > Raise capacity for the utilization
 - ✓ Literacy about disaster, safety, etc.
 - ✓ Application technology/skill

3. Contribution to Disaster Resiliency

- > JMA to Contribute to "Disaster Awareness Society" and to play the leading role in met. services
 - ✓ Improved impact-based warnings on the basis of advanced sci & tech
 - ✓ Collaborate with stake-holders to build local decision making capacity
 - ✓ Raise individual disaster awareness and response capacity


We need to observe 3-D humidity information to improve these forecasts

Toward Better Prediction for Stationary Linear Mesoscale Convective Systems

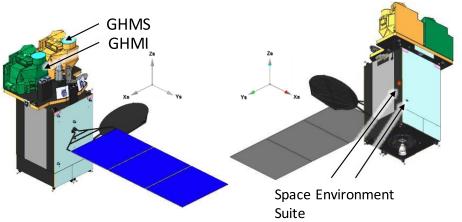
- High-impact weather events in recent years have resulted in a demand for improving JMA's weather forecasts/warnings
- Torrential rain events during East Asian rainy season in 2020 and
 2021 further enhanced this demand
 - ✓ Mainly caused by stationary linear mesoscale convective systems
- JMA established WG with external experts and internal TF to improve the prediction system to issue warnings with extended lead time by
 - ✓ Introducing advanced observation technologies such as GNSS receivers on vessels (short-term subject) and geostationary IR sounders (long-term subject)
 - ✓ Improving NWP models
- Enhanced collaboration with academia.

Coordination Group for Meteorological Satellites

Houses submerged by the Kuma River on 4 July 2020 (MLIT)

3-h accumulated radar/rain-gauge obs. (mm) at 0500 on 4th July 2020

Himawari-10 Overview


Missions

- **Geostationary HiMawari Imager (GHMI)**Measures visible & infrared radiance for weather monitoring/nowcasting & other applications.
- Measures high-spectral-resolution infrared radiance to collect vertical information of atmospheric temperature & water vapor, which improve weather forecasting by assimilating to numerical weather prediction models.
- Data Collection System
 Relays surface-based Data Collection Platforms (DCPs) data.
- Space Environment Suite
 Measures proton & electron flux in geostationary orbit, as a government furnished equipment by NICT.

Location

Geostationary orbit at around 140.7 deg. E

Satellite Outline

Satellite Design		
Spacecraft	MELCO standard DS2000 bus	
Mass (approx.)	2.4 t (dry), 6.1 t (with propellant)	
Size (approx.)	4 m x 3 m x 6 m (folded), 11 m (deployed)	
Design life	≥ 15 years (mission period ≥ 10 years)	
Communicatio ns	Ka-band: Mission data downlink Ku-band: TT/C uplink & downlink UHF-band: DCP uplink	

Geostationary HiMawari Imager (GHMI)

- L3Harris's new 18-band imager based on the same concept with its GeoXO Imager (GXI) selected by NASA
- Observing sequence & band configuration changed for Himawari-10 | Improvement from Himawari-8/9
- Values in the tables show JMA requirements

GHMI Observing Area & Interval

Observing Area (minimum coverage)	Interval
Full Disk	10 min
Japan (EW 2500 km x NS 2000 km)	2.5 min
Target Area1 (EW 1000 km x NS 1000 km)	2.5 min
Target Area2 (EW 1000 km x NS 1000 km)	2.5 min
Target Area3 (EW 1000 km x NS 1000 km	2.5 min
Target Area4 (EW 1000 km x NS 1000 km)	2.5 min
Target Area5 (*) (EW 1000 km x NS 500 km)	30 sec

Coordinat Meteorological Satellites *Mainly used for CAL/VAL activities

	GHMI Spectral	band chara	cteristics
	Center Wavelength	Band width	Spatial resolution
	[μm]	[μm]	at nadir [km]
	0.46 - 0.48	≤ 0.07	≤ 1
VIS	0.54 - 0.56	≤ 0.05	≤ 1
	0.63 - 0.65	≤ 0.12	≤ 0.5
	0.85 - 0.87	≤ 0.06	≤ 1
NIR	1.3/5 - 1.385	≤ 0.04	≤ 2
14.114	1.60 - 1.62	≤ 0.08	≤ 2
	2.24 - 2.27	≤ 0.06	≤ 2
	3.75 - 3.95	≤ 0.50	<u>≤1</u>
	5.10 5.20	≤ 0.20	
	6.05 - 6.45	≤ 1.20	≤ 2
	6.90 - 7.00	≤ 0.50	≤ 2
	7.27 - 7.43	≤ 0.60	≤ 2
IR	8.44 - 8.76	≤ 0.50	≤ 2
	9.55 - 9.70	≤ 0.50	≤ 2
	10.3 - 10.5	≤ 0.90	≤ 2
	11.1 - 11.3	≤ 1.00	≤ 2
	12.25 - 12.55	≤ 1.20	≤ 2
	13.2 - 13.4	≤ 0.70	≤ 2

Geostationary HiMawari Sounder (GHMS)

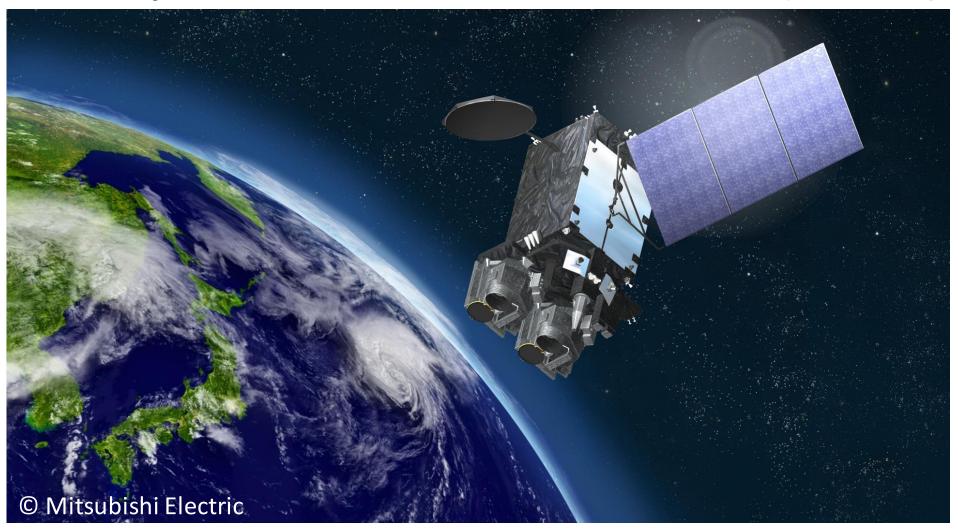
- L3Harris's new infrared FTS sounder based on the same concept with its GeoXO Sounder (GXS) being proposed to NASA
- Observing sequence changed for Himawari-10
- Values in the tables show JMA requirements

GHMS Observing Area & Interval

Observing Area (minimum coverage)	Interval
Sounding Disk (LZA ≤ 60 deg)	60 min
Japan (EW 2500 km x NS 2000 km)	15 min [*]
Target Area (EW 1000 km x NS 1000 km)	15 min

Sounding Disk observation over Japan area is regarded as one of the "Japan" observations in the 60-min repeat cycle (i.e., three "Japan" observations to be conducted in 60 minutes).

GHMS Spatial & Spectral characteristics


Spatial (horizontal) resolution		≤ 4.2 km
Spectral	LWIR	680 - 1095 cm ⁻¹ (14.7 - 9.13 μm)
Coverage	MWIR	1689 - 2250 cm ⁻¹ (5.92 - 4.44 μm)
Spectral Resolution (FWHM)		≤ 0.754 cm ⁻¹
Spectral Sampling Distance		≤ 0.625 cm ⁻¹

Thank you!!

Himawari-10 Perspective image

