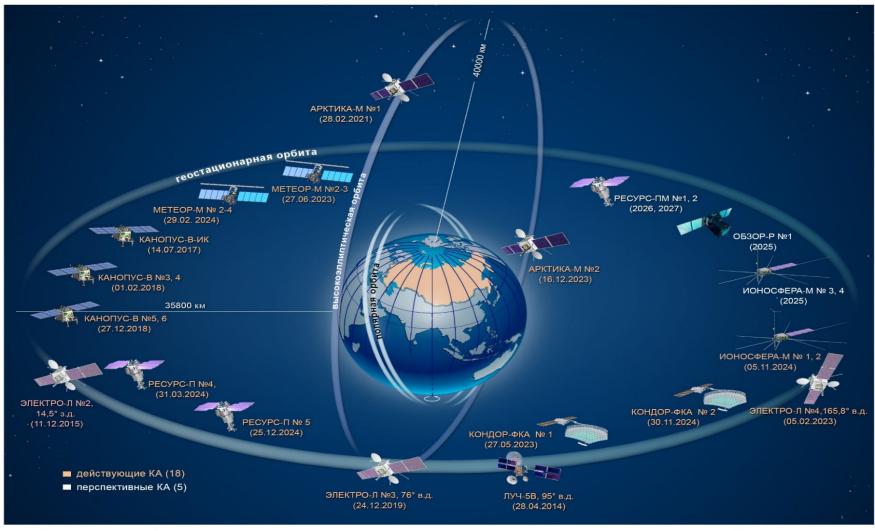
ROSHYDROMET updates since CGMS-52 and report on the medium to long-term future plans on earth observation

Presented to CGMS-53 plenary session, agenda item 3

Coordination Group for Meteorological Satellites

Executive summary


This document addresses the current status of the Russian satellite systems for hydrometeorology and heliogeophysics.

Since CGMS-52 the Russian hydrometeorological satellite constellation has been increased by 2 polar-orbiting heliogeophysical satellites Ionosphere-M N1 and Ionosphere-M N2 launched on 5 November 2024 by group launch.

Coordination Group for Meteorological Satellites

Overview - Planning of ROSHYDROMET/ROSCOSMOS satellite systems

Coordination Group for Meteorological Satellites

CURRENT GEO SATELLITES

Electro-L constellation standing points:

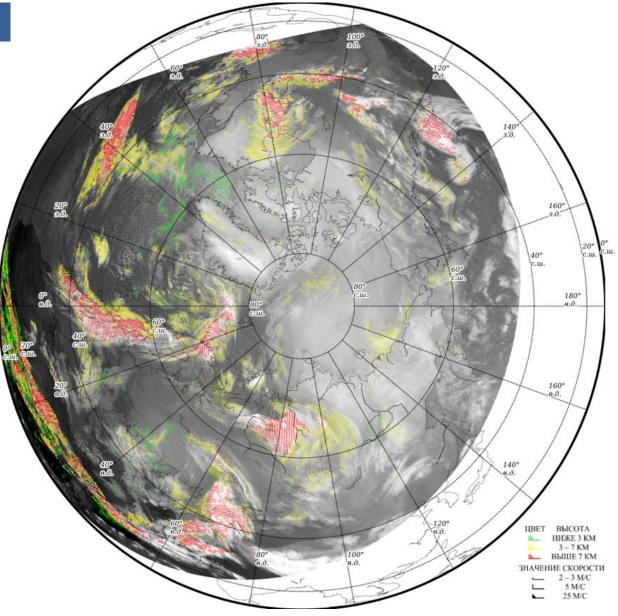
14,5°W – Electro-L N2 76°E – Electro-L N3 165,8°E – Electro-L N4

- Instrument payload:
 - MSU-GS imager
 - Heliogeophysical complex GGAK-VE
 - Data collection system
 - COSPAS-SARSAT system
 - direct broadcast HRIT/LRIT
- Objectives of Electro-L mission:
 - Continuous observation of the Earth disc within a radius of 55-60 degrees centered at the sub-satellite point;
 - Simultaneous images of cloud cover and the Earth's surface in 3 visible and 7 infrared channels;
 - Heliogeophysical measurements at geostationary orbit altitudes;
 - Collection and retransmission of the hydrometeorlogical data from national and international platforms (DCPs);
 - Retransmission of the data from Roshydromet regional centers;
 - Data dissemination in HRIT/LRIT formats to national and foreign users

CURRENT HEO SATELLITES

- ➤ The main purposes of the mission Arctica-M are meteorology, oceanography, including ice cover monitoring and disaster monitoring in the Arctic region. To perform operational monitoring of polar regions 24 hours a day each of two satellites is covering the area for ~6 hours and then step back for the next one. The repeat cycle time for each satellite is exactly 12 hours
- Primary objectives of Arctica-M mission:
 - Continuous observation of Arctic and contiguous region
 - Simultaneous images of cloud cover and the Earth's surface in 10 visible and infrared channels
 - Heliogeophysical measurements at orbit altitudes (Electromagnetic solar radiation, corpuscular radiation and terrestrial magnetic fields)
 - The development and maintaining the national data collection system, collection of the hydrometeorlogical data from national and international platforms
 - Two-way radio communication with stations of Roshydromet hydrometeorlogical network

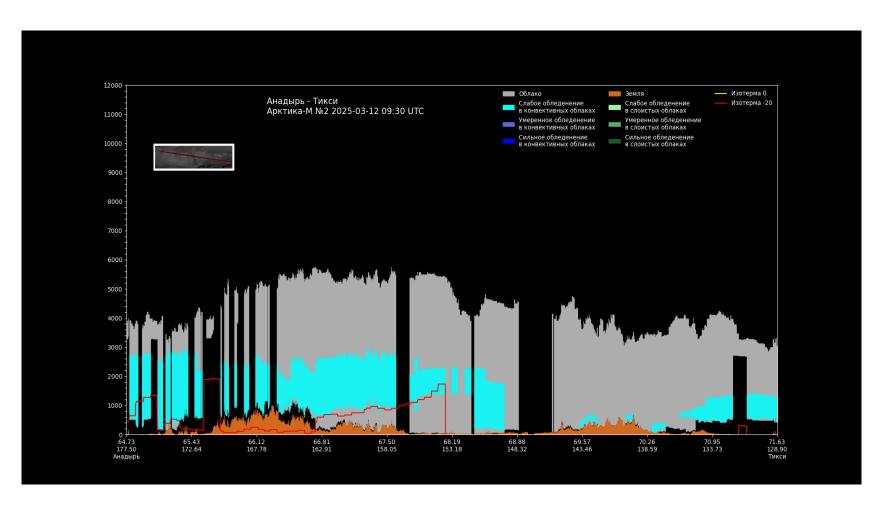
Coordination Group for Meteorological Satellites


CURRENT HEO SATELLITES

Coordination Group for Meteorological Satellites

CURRENT HEO SATELLITES

Wind vectors map from Arctica-M (optical flow algorithm)


24/02/2025

11:00 UTC

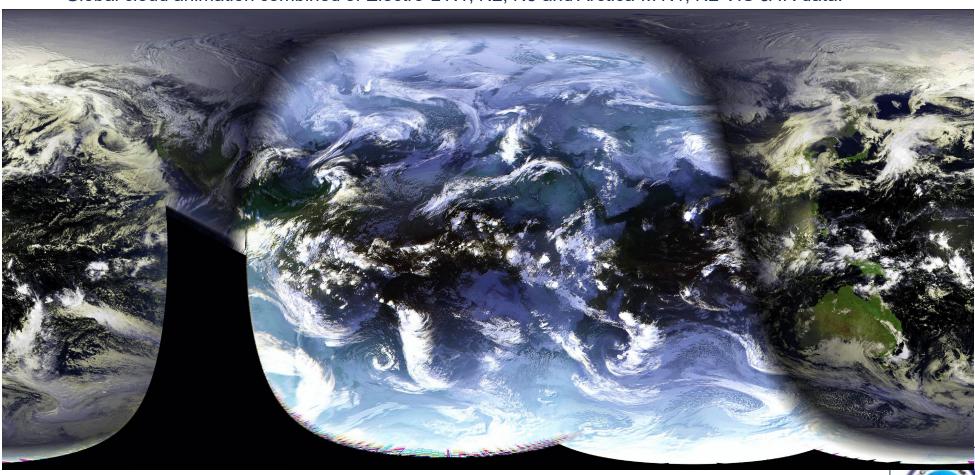
Coordination Group for Meteorological Satellites

CURRENT HEO SATELLITES

Vertical section of cloudiness and and icing zones along the air route Anadyr-Tiksi

12/03/2025 9:30 UTC

CURRENT HEO SATELLITES

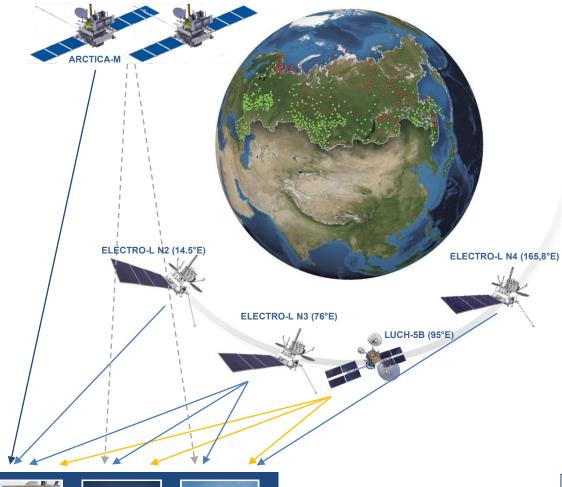

- > Arctica-M N1 and N2 payload is similar to those of Russian geostationary satellites and includes:
 - MSU-GS/VE imager in 3 visible channels (1 km spatial resolution) and 7 IR channels (4 km spatial resolution)
 - GGAK-VE Heliogeophysical Measurements Suite
 - Data collection system (DCS)
- Both Arctica-M N1 and N2 satellites are functional without limitations
- The ground segment for Arctica-M constellation is based on SRC Planeta/Roshydromet satellite centers, responsible for receiving, processing, disseminating and archiving of satellite data: European (Moscow, Obninsk), Siberian (Novosibirsk) and Far-Eastern (Khabarovsk)

Coordination Group for Meteorological Satellites

CURRENT GEO/HEO SATELLITES

Global cloud animation combined of Electro-L N1, N2, N3 and Arctica-M N1, N2 VIS & IR data.

Coordination Group for Meteorological Satellites


25/04/2025

CURRENT GEO/HEO SATELLITES

DCS comprises of the network of DCPs at Roshydromet' observational sites, relay transponders at Russian satellites of 3 Electro-L, 2 Arctica-M and Luch series, and ground receiving stations at SRC Planeta satellite centers.

Data is currently being collected from 698 Roshydromet's observation network (•••), including 137 difficult to access stations (•).

Coordination Group for Meteorological Satellites

CURRENT LEO SATELLITES

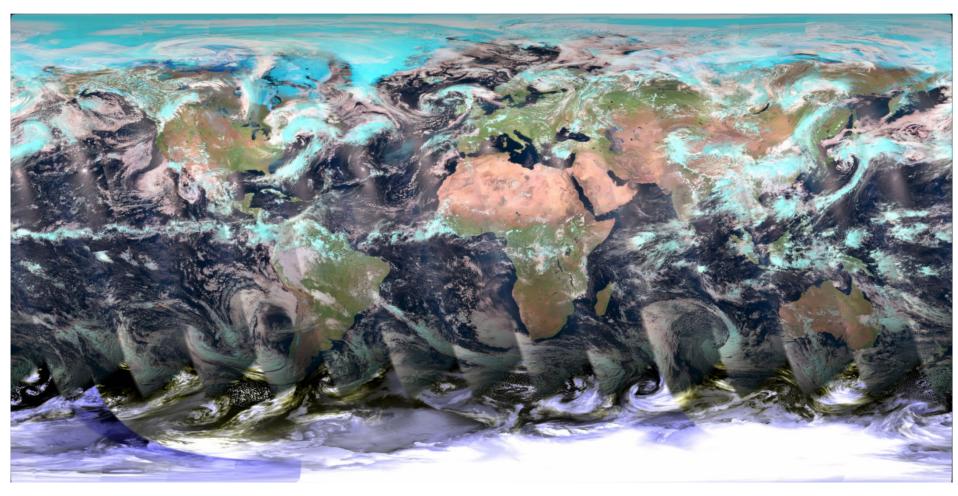
➤ Two Meteor-M series satellites are now operational on sun-synchronous orbit with ~820 km height, 98.8°inclination:

Meteor-M N2-3 - "morning" orbit, ascending equator crossing time ~ 9:30

Meteor-M N2-4 - "afternoon" orbit, ascending equator crossing time ~ 15:00

Meteor-M N2-2 has been decommissioned since January 2025

- Instrument payload operational for now:
 - MSU-MR Scanning Radiometer (1 km spatial resolution multichannel scanning unit, 6 channels, VIS/IR);
 - KMSS VIS Scanning Imager (6 channels implemented by 3 cameras, 50 m and 100 m spatial resolution);
 - MTVZA-GY Imaging/Sounding Microwave Radiometer (module for temperature and humidity sounding of the atmosphere, 26 channels, 10.6 183 GHz);
 - IKFS-2 IR Fourier-transform spectrometer (IR atmospheric sounder, spectral range 5-15 mkm, spectral resolution ~ 0.5 cm-1);
 - METEOSAR X-band Synthetic Aperture Radar (onboard only Meteor-M N3 and N2-4);
 - GGAK-M Heliogeophysical Measurements Suite;
 - Data collection system (DCS)
 - COSPAS-SARSAT system

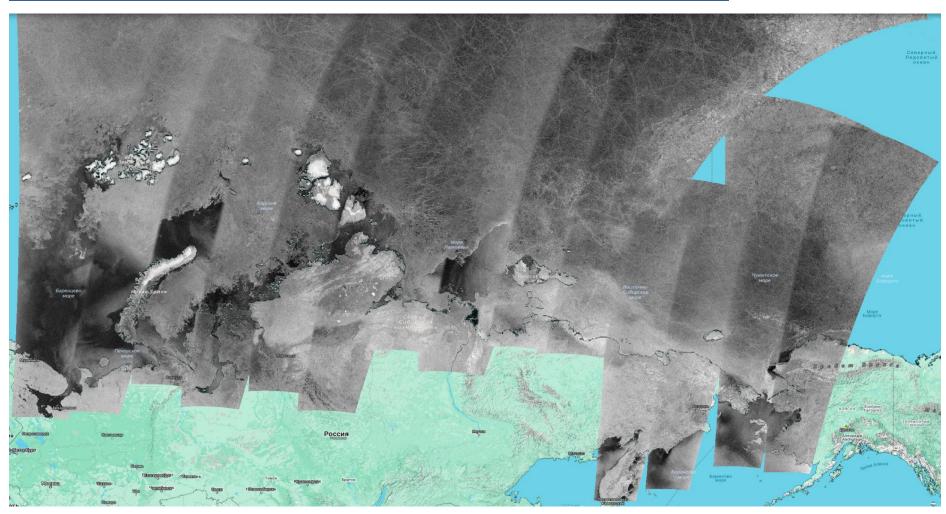

CURRENT LEO SATELLITES

- The main objective of Meteor-M mission is to provide global observations of the Earth's surface and the atmosphere for the following purposes:
 - Weather analysis and forecasting on global and regional scales
 - Global climate change monitoring;
 - Sea surface observations;
 - Sea ice observations;
 - · Disaster monitoring;
 - Space weather analysis and prediction (solar wind, ionosphere research, Earth's magnetic field, etc.).
- ➤ Meteor-M N2-3, N2-4 has three downlink radio lines:
 - 2-channel X-band radio link (8.192 GHz and 8.320 GHz) with 122.88 Mbps data transmission rate in each channel (not operational on Meteor-M N2-3)
 - L-band radio link (1.7 GHz) with 665.4 Kbps data transmission rate (HRPT data transmission);
 - VHF-band radio link (137 MHz) with 80 Kbps data transmission rate (LRPT data transmission).

Coordination Group for Meteorological Satellites

CURRENT LEO SATELLITES

Global coverage of Meteor-M MSU-MR VIS & IR data


29/05/2025

Coordination Group for Meteorological Satellites

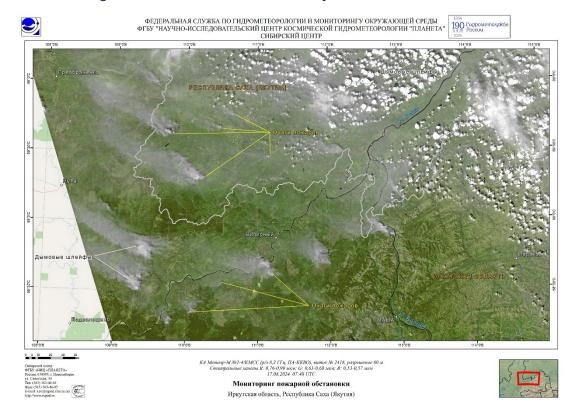
CURRENT LEO SATELLITES

Arctic ocean coverage of Meteor-M N2-4 METEOSAR for ice conditions analysis along the Northern Sea Route

30/05-02/06/2025

Coordination Group for Meteorological Satellites

CURRENT LEO SATELLITES


Monitoring of floods in West Siberia by Meteor-M N2-2 KMSS data

06/07/2024

Coordination Group for Meteorological Satellites

Monitoring of forest fires in Yakutia by Meteor-M N2-4 KMSS data

17/08/2024

CURRENT LEO SATELLITES

Status of spacecraft:

Meteor-M N2-3 is operational with limitations: Due to failure of X-band radio link the transmission of global data and SAR data is not carried out.

Meteor-M N2-4 is operational with limitations: METEOSAR is operational only separately of other payload since METEOSAR and other sensors need different spacecraft orientation.

Meteor-M LEO constellation is planned to consist of 4 spacecrafts to provide meteorological data over Russian Federation at least 8 times per day at synoptic time

Coordination Group for Meteorological Satellites

FUTURE GEO SATELLITES

Mission	Operator(s)	Orbit	Launch planned	Instruments	
Electro-L N5	ROSHYDROMET /ROSCOSMOS	GEO, standing point 77E	2025	- MSU-GS, - GGAK-VE,	
Electro-L N6	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	2030	- DSC, - COSPAS-SARSAT,	
Electro-L N7	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	2032	- direct broadcast HRIT/LRIT	
Electro-M N1	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	2033	 MSU-GSM imager with ~20 channels, hyperspectral sounder IKFS-GS, lightning detector, radiation balance radiometer, heliogeophysical complex KGI, DSC, COSPAS-SARSAT, direct broadcast HRIT/LRIT 	
Electro-M N2	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	2034		

- > Electro-L N5, 6 and 7 are the serial satellites planed for maintain the current constellation
- ➤ New generation GEO satellite series Electro-M with extended useful payload is planned to start after 2032

Coordination Group for Meteorological Satellites

FUTURE LEO SATELLITES

Mission	Operator(s)	Orbit	Launch planned	Instruments
Meteor-M N2-5	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	2027	MSU-MRMTVZA-GYIKFS-2
Meteor-M N2-6	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	2028	• KMSS • DCS
Meteor-M N2-7	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	2032	METEOSARGGAK-M2
Meteor-M N2-8	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	2033	COSPAS-SARSAT
Meteor-MP N1	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	>2033	 MSU-MR-MP (20 channels) MTVZA-MP IKFS-3 SA-MP - atmosphere gas content spectrometer SCAT-MP - sctterometer ARMA-MP - radio occultation sounder KGI-MP - heliogeophysical complex DCS COSPAS-SARSAT
Ionosphere-M N3, N4	ROSHYDROMET /ROSCOSMOS	LEO	July 2025	Instrument complex for study of upper atmosphere, ionosphere and near-earth space

- Meteor-M N2-5 N2-8 will be serial identic satellites to form LEO constellation
- Meteor-MP will start next generation LEO constellation with improved characteristic and new payload incl. scatterometer, radio occultation sounding, greenhouse gas spectrometer

Coordination Group for Meteorological Satellites

FUTURE HEO SATELLITES

Mission	Operator(s)	Orbit	Launch planned	Instruments
Arctica-M N3, N4	ROSHYDROMET/ROSCOSMOS	HEO Molnya Orbit	2029	• MSU-GS/HE • GGAK-VE
Arctica-M N5, N6	ROSHYDROMET/ROSCOSMOS	HEO Molnya Orbit	2030	• DSC
Arctica-M N7, N8	ROSHYDROMET/ROSCOSMOS	HEO Molnya Orbit	2034	

- The HEO constellation of 4 spacecraft will allow to double the periodicity of observation from two angles
- The next satellites will be launched to maintain the constellation

Coordination Group for Meteorological Satellites

CONCLUSIONS

Russian Federation is currently developing a national constellation of both geostationary and polar orbiting meteorological satellites. It is complemented by the satellites at highly elliptical "Molnya" type orbits for frequent coverage of the northern areas.

Coordination Group for Meteorological Satellites

Thanks for attention!

Coordination Group for Meteorological Satellites

