IMPLEMENTATION OF CGMS BEST PRACTICES IN SUPPORT TO LOCAL AND REGIONAL PROCESSING OF LEO DIRECT BROADCAST DATA AT EUMETSAT

Working Paper summary:

This paper presents status of implementation at EUMETSAT of the CGMS Agency Best Practices in support to Local and Regional Processing of LEO Direct Broadcast data (CGMS/DOC/18/1008274) for each of the Metop and Metop-SG LEO satellite missions.

Action/Recommendation proposed:

WG1 is invited to take note and comment on the status of implementation at EUMETSAT of the CGMS best practices in support to local and regional processing of LEO direct broadcast data.
IMPLEMENTATION OF CGMS BEST PRACTICES IN SUPPORT TO LOCAL AND REGIONAL PROCESSING OF LEO DIRECT BROADCAST DATA AT EUMETSAT

1 INTRODUCTION

This paper presents the status of implementation at EUMETSAT of the CGMS Agency Best Practices in support to Local and Regional Processing of LEO Direct Broadcast data (CGMS/DOC/18/1008274) for each of the Metop and Metop-SG LEO satellite missions.

2 STATUS OF IMPLEMENTATION

In the following sections, the status of implementation is given for both Metop and Metop-SG for each of the nine Best Practices (BP) defined in CGMS Agency Best Practices in support to Local and Regional Processing of LEO Direct Broadcast data (CGMS/DOC/18/1008274).

2.1 BP.01 Global Specification for Direct Broadcast

Best Practice BP.01: Operators should implement the agreed CGMS Direct Broadcast Services: LRPT/AHRPT Global Specification (Document No. CGMS 04).

Document No. CGMS 04 is available at: https://www.cgms-info.org/documents/Direct_Broadcast_Services__LRPT_AHRPT_Global_Specification__Issue_2_01.pdf

2.1.1 Metop

Compliant. The Metop Direct Broadcast (AHRPT) is compliant with the CGMS Global Specification for Direct Broadcast.

2.1.2 Metop SG

EPS-SG Direct Broadcast is compliant with the HRPT CGMS Global Specification for Direct Broadcast (X band at 7.825 GHz), details available in EPS-SG Space-to-Ground Interface Control Documents available at: https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_DMT_1109989&RevisionSelectionMethod=LatestReleased&Rendition=Web

2.2 BP.02 Timely provision of Space-to-Ground Interface Control Documents

Best Practice BP.02: CGMS operators should provide up-to-date and satellite-specific Space-to-Ground Interface Control Documents in English language at least 3 years before the launch of each satellite, including at least:

a) Frequency usage
b) Polarization
c) Encoding
d) G/T requirements
e) Data stream layout and content
f) Conformance with CCSDS.
g) Conformance with the CGMS Global Specification (see section 1)

2.2.1 Metop
Compliant. EUMETSAT maintains a webpage describing the Metop Direct Broadcast: https://www.eumetsat.int/website/home/Data/DataDelivery/DirectDissemination/.

The main documents describing the Space-to-Ground Interface are:
TD 18 Metop Direct Readout AHRPT Technical Description,
https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TD18_METOP_A_DIRECT_READ&RevisionSelectionMethod=LatestReleased&Rendition=Web

and HRPT LRPT Direct Broadcast Services Specification,

2.2.2 Metop SG
Space-to-Ground Interface details for the Metop SG Direct Broadcast:

2.3 BP.03 Provision of Current Orbit Information
Best Practice BP.03: CGMS operators should ensure timely provision of accurate and up-to-date orbit information based on their operational orbit determination and knowledge of satellite manoeuvres. The orbit information should be made available to Direct Broadcast reception station operators:

a) In TLE format via FTP or HTTP over the Internet;
b) Additionally, if required for the processing and geolocation of the sensor data, in the relevant mission specific format via FTP or HTTP over the Internet and/or via the satellite’s Direct Broadcast signal;
c) Additionally, if the satellite operator chose to do so, in TLE format via the satellite’s Direct Broadcast signal.

The satellite operator shall document:

d) The details of how and where the orbit information is made available;
e) For any mission specific format, the format definition and its application.
2.3.1 Metop

Compliant. The TLE for the Metop satellites are provided on this webpage: http://oiswww.eumetsat.org/metopTLEs/html/index.htm and includes links to the latest TLE for each individual satellite in plain text file format.

Additionally, the TLEs for all Metop satellites are included in the Multi-Mission Administrative Message transmitted via the Metop Direct Broadcast, see: http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_MMAM_USER_GUIDE&RevisionSelectionMethod=LatestReleased&Rendition=Web.

In both cases the TLE are derived from the EUMETSAT operational orbit determination and prediction and includes the effect of manoeuvres from shortly after the manoeuvres have been executed.

2.3.2 Metop SG

Will be established prior to launch of the first Metop SG.

2.4 BP.04 Provision and maintenance of Product Processing software packages

Best Practice BP.04: Each LEO satellite operator should therefore ensure that:

a) Software packages for the relevant instruments are made available with a test version made available prior to launch and the operational version made available after end of commissioning of the satellite and as soon as feasible for the satellite operator;

b) To enable deployment of the software packages within organisations not permitting installation of pre-compiled software, source code should be made available;

c) Global and local product processing shall be harmonised in that brightness temperature products derived from both paths agree within tolerances that are not greater than few tenths (goal is 10%) of the respective performance requirements for bias error at a reference brightness temperature;

d) User support and maintenance services are available for the duration of the mission;

e) Notifications for software changes are provided to the user community;

f) Complete and comprehensive user documentation and S/W release documentation is supplied in English language;

g) The s/w installation procedure is user friendly;

h) The software package is executable on a standard computer platform, typically Linux/x86-64, providing a performance compatible with the timeliness requirements defined in the Guide to DBNet (CGMS-44-WMO-WP-10);

i) For reasons of performance, it should be possible to configure the software to process only the instruments and processing levels required locally;

j) Test data for verifying the installation of the S/W packages are made available.
2.4.1 Metop

Compliant. The Product Processing software packages for the Metop Direct Broadcast are being provided and maintained by several EUMETSAT Satellite Application Facilities (SAFs):

 - AAPP software for HIRS, AVHRR, AMSU, MHS and IASI
 - Scatterometer Winds processing software for ASCAT
 - Radio Occultation Processing Packages (ROPP) for GRAS
 - Cloud Mask and physical, optical and geometrical cloud properties for AVHRR

EUMETSAT provides access to software packages and related documentation through the indicated SAF Web pages (BP.04a). Access and support functions available after user registration.

Source code is made available (BP.04b) to users. In general, user support (BP.04d) and user notification (BP.04e) is a committed element for all SAFs. S/W releases include extensive documentation (BP.04f) in English, including validation results and algorithm descriptions. The SAFs strive for a user friendly installation process (BP.04e), independently assessed in Operations Reviews with key users. S/W packages tested for a large set of standard computer platforms (BP.04h) including Linux. SAF S/W are configurable (BP.04i) for sensor and area selection, resolution, auxiliary input data (e.g. NWP model output). NWC SAF operates reference platform in order to test local installations of S/W packages (BP.04j)

The software provided by the OSI SAF, ROM SAF and NWC SAF uses level 1 data as its input.

Additionally, EUMETSAT provides the Metopizer software providing Level-0 processing and other tools for manipulating CCSDS Instrument Source Packets and other related data types (CADU, t-VCDU packets, Metop L0 products) from the Metop Direct Broadcast. It can be found here: https://www.eumetsat.int/website/home/Data/DataDelivery/Software/index.html.

2.4.2 Metop SG

The Product Processing software packages for the Metop SG Direct Broadcast will be developed and distributed by several EUMETSAT Satellite Application Facilities (SAFs):

 - AAPP software for Metimage, IASI-NG, MWS and ICI.
 - Scatterometer Winds processing software for SCA
- Radio Occultation Meteorology SAF (http://rom-saf.eumetsat.int)
 - Radio Occultation Processing Packages (ROPP) for RO
 - Cloud Mask and physical, optical and geometrical cloud properties for Metimage
Ice Water Path for ICI

The Metop SG software packages will be made available in a similar way to the corresponding Metop software packages.

Additionally, EUMETSAT will be providing Metop-SGizer software, which will provide equivalent functionality to the Metopizer software, but for Metop-SG.

2.5 BP.05 Provision of auxiliary data for instrument product processing

Best Practice BP.05: Each operator of instruments requiring auxiliary data for the product processing must make available the necessary auxiliary data on the Internet in a user-friendly and timely manner. Announcements of the availability of new auxiliary data should be issued giving the Direct Broadcast reception station operators sufficient time to update their systems.

2.5.1 Metop

Compliant. This data is provided by the EUMETSAT SAFs, see BP.04.

2.5.2 Metop SG

Scope and provision of auxiliary data for instrument product processing under consideration.

2.6 BP.06 Recommendations of channel selection for hyperspectral instruments

Best Practice BP.06: Each CGMS operator of hyperspectral instrument is responsible for defining a recommended channel selection scheme for global NWP purposes. The channel selection shall be made available to DB station operators prior to the launch of the first instrument and subsequently whenever the channel selection is modified.

2.6.1 Metop

2.6.2 Metop SG

Will be provided starting from the launch of the first Metop SG.

2.7 BP.07 Spacecraft and Instrument Operational Status

Best Practice BP.07: Each CGMS operator to publish and maintain up to date spacecraft and instrument operational status information on the Internet. The CGMS
operators should establish a scheme to review on a regular basis that the published status information is up to date.

2.7.1 Metop

Compliant. The EUMETSAT User Notification Service (UNS) is described here: https://www.eumetsat.int/website/home/Data/ServiceStatus/index.html and the tool is accessible here: https://uns.eumetsat.int.

To access the Spacecraft and Instrument Operational Status in the tool, select the Multi-Mission Administrative Message tab and the most recent message.

2.7.2 Metop SG

Will be provided starting from the launch of the first Metop SG.

2.8 BP.08 Operational Announcements

Best Practice BP.08: Each CGMS operator to announce planned operations and status changes as well as any observed degradation of the spacecraft and its instruments via e-mail and optionally via other channels.

2.8.1 Metop

Compliant. The EUMETSAT User Notification Service (UNS) is described here: https://www.eumetsat.int/website/home/Data/ServiceStatus/index.html and the tool is accessible here: https://uns.eumetsat.int.

To access the Operational Announcements in the tool, select the Announcements tab and apply the relevant filtering.

To receive email notifications provided through the UNS, register via the Earth Observation Portal (EOP), https://eoportal.eumetsat.int/userMgmt/login.faces. Once your account has been created, login to UNS (or follow the link from the EOP) to manage your email subscriptions via “My Subscriptions”.

2.8.2 Metop SG

Will be provided starting from the launch of the first Metop SG.

2.9 BP.09 Satellite Direct Broadcast and Reception Station Performance Requirements

Best Practice BP.09: When planning, designing, and developing satellite Direct Broadcast (DB) downlink capabilities, the CGMS agencies will strive to minimize, when possible, negative impacts on the DB community by communicating with manufacturers and users; coordinating with the other CGMS agencies; and considering these potential impacts during the CGMS agency’s decision-making process.
The performance of the satellite’s DB X-Band (7.8 GHz, ITU MetSat Band) downlink should be sufficient for nominal data reception at any reception station within the satellite’s footprint at elevations above 5 degrees and a G/T value of at least 21.20 dB/K. The calculation of the satellite DB performance shall include an allocation of at least 7.05 dB for reception station losses, rain and atmospheric losses, and link budget margin. The G/T is defined at the input of the IF receiver, at 5 degree antenna elevation and clear sky conditions.

A reception station operator may be required to establish a reception station with additional performance margin to account for local conditions, including climate, RF interference or the impact of an antenna radome.

2.9.1 Metop

N/A as Metop Direct Broadcast is in L-Band.

2.9.2 Metop SG

Compliant. The Link Budget in Appendix A demonstrates nominal data reception when assuming a reception station G/T value of 21.2 dB/K and allocating 7.05 dB for reception station losses, rain and atmospheric losses and link budget margin.

3 ACTIONS AND/OR RECOMMENDATIONS FOR CONSIDERATION BY CGMS WG-I

WG-I members are invited to take note and comment on the status of implementation at EUMETSAT of the CGMS Best Practices in support to local and regional processing of LEO direct broadcast data.
APPENDIX A. Supporting information for BP.09

Supporting information for BP.09 *Satellite Direct Broadcast and Reception Station Performance Requirements.*

The Link Budget below assumes a reception station G/T value of 22.7 dB/K as defined in BP.09. The reception station losses (a), (c), (d), (e) rain and atmospheric losses (b), and link budget margin (f) add up to 11.41 dB, giving a positive margin of 4.36 dB relative to the 7.05 dB defined in BP.09 and sufficient for nominal data reception at any reception station within the satellite’s footprint at elevations above 5 degrees.

Please note that the Link Budget is provisional and that the Space-to-Ground Interface details for the Metop SG Direct Broadcast are not yet publicly released.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Design Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>GHz</td>
<td>7.825</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Satellite EIRP</td>
<td>dBW</td>
<td>24.58</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Propagation Path Length</td>
<td>Km</td>
<td>2890</td>
<td>Alt=850 Km, Elev Angle=5°</td>
</tr>
<tr>
<td>Free Space Loss</td>
<td>dB</td>
<td>179.54</td>
<td></td>
</tr>
<tr>
<td>Polarisation Loss (a)</td>
<td>dB</td>
<td>0.07</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Rain & Atmospheric Loss (b)</td>
<td>dB</td>
<td>2.8</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Multipath Loss (c)</td>
<td>dB</td>
<td>0.2</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Ground Antenna Pointing Loss (d)</td>
<td>dB</td>
<td>1</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Ground Station G/T</td>
<td>dB/K</td>
<td>22.7</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Power Flux Density at E/S</td>
<td>dBm/m²</td>
<td>85.63</td>
<td></td>
</tr>
<tr>
<td>Boltzmann's Constant</td>
<td>dBm/Hz-K</td>
<td>-198.6</td>
<td></td>
</tr>
<tr>
<td>Power Flux Density at E/S</td>
<td>dBW/m²</td>
<td>-115.63</td>
<td></td>
</tr>
<tr>
<td>DATA CHANNEL (QPSK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Power/No</td>
<td>dBm/Hz</td>
<td>87.72</td>
<td>188 Mbps with Reed Solomon (255/223) + Convolutional rate 1/2</td>
</tr>
<tr>
<td>Information Rate</td>
<td>dB-Hz</td>
<td>79.16</td>
<td></td>
</tr>
<tr>
<td>Available Eb/No</td>
<td>dB</td>
<td>7.70</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Required Eb/No for 10⁻⁶ FER</td>
<td>dB</td>
<td>3.06</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>Implementation Loss (e)</td>
<td>dB</td>
<td>3.18</td>
<td>Metop-SG Space to Ground ICD</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The reception station losses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a), (c), (d), (e) rain and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>atmospheric losses (b), and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>link budget margin (f) add up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to 11.41 dB, giving a positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>margin of 4.36 dB relative to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the 7.05 dB defined in BP.09 and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sufficient for nominal data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reception at any reception</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>station within the satellite’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>footprint at elevations above 5</td>
</tr>
<tr>
<td>Available Signal Margin (f)</td>
<td>dB</td>
<td>4.16</td>
<td>degrees.</td>
</tr>
</tbody>
</table>

Table 1: Metop-SG DB Link Budget