Indian Ocean Data Coverage (IODC) service – endorsement of the CGMS roadmap implementation

Presented to CGMS-[44] [Working Group III/7 and Plenary E 3.3]
Introduction

The Indian Ocean Data Coverage (IODC) mission is a best effort undertaking which reflects a decision of the EUMETSAT Council to use a residual Meteosat First Generation capacity for this purpose, in the context of a temporary data gap over the Indian Ocean.

Meteosat-7, the last satellite of the Meteosat First Generation, will reach its End-of-Life in March 2017 with the re-orbiting of the satellite to follow in early 2017, thereby ending the EUMETSAT IODC mission.

CGMS 42 endorsed the baseline requirements for IODC and CGMS 43 endorsed the CGMS IODC roadmap and timeline with associated actions that aimed at establishing resilient multi-partners IODC services in the region.
<table>
<thead>
<tr>
<th>Satellite</th>
<th>Longitude</th>
<th>Operator</th>
<th>Launch date</th>
<th>Projected EOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteosat-7</td>
<td>57.5°E</td>
<td>EUMETSAT</td>
<td>02/09/1997</td>
<td>Q1 2017</td>
</tr>
<tr>
<td>Meteosat-8</td>
<td>3.5°E *</td>
<td>EUMETSAT</td>
<td>28/08/2002</td>
<td>2019 - 20</td>
</tr>
<tr>
<td>Elektro-L N1</td>
<td>76°E</td>
<td>Roshydromet</td>
<td>20/01/2011</td>
<td>≥ 2018</td>
</tr>
<tr>
<td>Elektro-L N2</td>
<td>77.8°E</td>
<td>Roshydromet</td>
<td>11/12/2015</td>
<td>≥ 2022</td>
</tr>
<tr>
<td>Kalpena-1</td>
<td>74°E</td>
<td>ISRO</td>
<td>12/09/2008</td>
<td>≥ 2016</td>
</tr>
<tr>
<td>INSAT-3A</td>
<td>93.5°E</td>
<td>ISRO</td>
<td>04/10/2003</td>
<td>≥ 2016</td>
</tr>
<tr>
<td>INSAT-3D</td>
<td>82°E</td>
<td>ISRO</td>
<td>25/07/2013</td>
<td>≥ 2021</td>
</tr>
<tr>
<td>FY-2E</td>
<td>86.5°E</td>
<td>CMA</td>
<td>19/10/2004</td>
<td>≥ 2017</td>
</tr>
</tbody>
</table>

* Relocation from 3.5°E to 41.50°E, subject to decision of the EUMETSAT Council
Future Satellites

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Longitude</th>
<th>Operator</th>
<th>Launch date</th>
<th>Projected EOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSAT-3DR (Repeat)</td>
<td>74°E</td>
<td>ISRO</td>
<td>≥ 2016/7</td>
<td>≥ 2024</td>
</tr>
<tr>
<td>INSAT-3DS (Spare)</td>
<td>74°E</td>
<td>ISRO</td>
<td>≥ 2022</td>
<td>≥ 2029</td>
</tr>
<tr>
<td>GISAT</td>
<td>85.5°E</td>
<td>ISRO</td>
<td>≥ 2017</td>
<td>≥ 2024</td>
</tr>
<tr>
<td>FY-2H</td>
<td>86.5°E (TBC)</td>
<td>CMA</td>
<td>≥ 2016</td>
<td>≥ 2020</td>
</tr>
<tr>
<td>FY-4A</td>
<td>86.5°E (TBC)</td>
<td>CMA</td>
<td>≥ 2016</td>
<td>≥ 2022</td>
</tr>
<tr>
<td>FY-4B</td>
<td>105°E (TBC)</td>
<td>CMA</td>
<td>≥ 2018</td>
<td>≥ 2022</td>
</tr>
<tr>
<td>FY-4C</td>
<td>86.5°E (TBC)</td>
<td>CMA</td>
<td>≥ 2020</td>
<td>≥ 2022</td>
</tr>
</tbody>
</table>
• Most of the DCPs allocated to Meteosat-7 at 57°E could be re-allocated to Meteosat-8 at 41.5°E. Several DCPs are at the eastern edge of the Indian Ocean are will be transferred to Himawari
<table>
<thead>
<tr>
<th>Satellite</th>
<th>Location</th>
<th>Image</th>
<th>Products</th>
<th>DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteosat-8</td>
<td>41.5°E</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (International)</td>
</tr>
<tr>
<td>INSAT 3D</td>
<td>82°E</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (regional)</td>
</tr>
<tr>
<td>Elektro-L N2</td>
<td>77.8°E</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (regional)</td>
</tr>
<tr>
<td>FY2-E</td>
<td>86.5°E</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (regional)</td>
</tr>
</tbody>
</table>
CGMS IODC Scenario and Timeline status

2015

- EUMETSAT to disseminate INSAT-3D images and products via EUMETCast.
- CMA to relocate FY2-E to 86.5°E and commence an operational service.
- EUMETSAT to disseminate FY2-E images and products from 86.5°E via EUMETCast.

2016

- EUMETSAT relocate Meteosat-8 to 41.5°E.
- EUMETSAT commence a Meteosat-8 operational service including images and products via EUMETCast.
- Roshydromet commence an Elektro-L N2 operational service.
- EUMETSAT to disseminate Elektro-L N2 images and products via EUMETCast.
To be endorsed by CGMS:

CGMS is invited to endorse the implementation of the CGMS IODC roadmap and timeline.
List of data and products declared Essential by CGMS agencies in support to IODC continuation

<table>
<thead>
<tr>
<th>Agency</th>
<th>CMA</th>
<th>EUMETSAT</th>
<th>ISRO</th>
<th>ROSHYDROMET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>FY-2E</td>
<td>Meteosat-8 (MSG)</td>
<td>INSAT-3D</td>
<td>Elektro-L N2</td>
</tr>
<tr>
<td>Position</td>
<td>86.5°E</td>
<td>41.5°E</td>
<td>82°E</td>
<td>77.8°E</td>
</tr>
<tr>
<td>Essential data</td>
<td>Imagery</td>
<td>Imagery</td>
<td>Imagery</td>
<td>Imagery</td>
</tr>
<tr>
<td>products</td>
<td>hourly</td>
<td>SEVIRI HR, 3-hourly</td>
<td>HRIT, half hourly</td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td>Products (EUMETCast)</td>
<td>Products (MOSDAC)</td>
<td>Products</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active Fire Monitoring (CAP/GRIB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface incidence</td>
<td>All Sky Radiances</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solar radiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmospheric Motion</td>
<td>Atmospheric Motion Vectors</td>
<td>Atmospheric Motion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vectors</td>
<td>Vectors</td>
<td>Vectors (On GTS and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>from MOSDAC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outgoing long wave</td>
<td></td>
<td>Outgoing long-wave</td>
<td></td>
</tr>
<tr>
<td></td>
<td>radiation</td>
<td></td>
<td>radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black body</td>
<td>Clear Sky Radiances</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>brightness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>temperature</td>
<td>Clear-Sky Reflectance Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud type</td>
<td>Cloud Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud amount</td>
<td>Cloud Analysis Image – MSG</td>
<td>Cloud Image</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cloud Mask</td>
<td>Cloud Mask</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cloud Top Height</td>
<td>Cloud Top Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Divergence Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Global Instability Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation</td>
<td>Multi-Sensor Precipitation Estimate</td>
<td>Rain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normalised Difference Vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index (daily and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>decadal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humidity Profile</td>
<td>Humidity profiles (from sounder)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>derived from cloud</td>
<td>Temperature profiles (from</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td>sounder)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimal Cloud Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Ozone</td>
<td>Ozone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper tropospheric humidity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>