

RUSSIAN FTIR SPECTROMETER (IKFS-2) FOR METEOROLOGICAL SATELLITES: FLIGHT EXPERIENCE AND FURTHER DEVELOPMENT

Presented to CGMS-48 Plenary Session, HSIR Observations, Agenda 4.2

Presenter: Alexey Rublev, State Research Center PLANETA, Roshydromet

Report prepared based on inputs from colleagues at Roscosmos & Roshydromet

Coordination Group for Meteorological Satellites

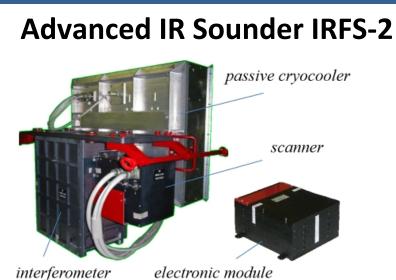
Roscosmos & Roshydromet, 20.08.2020

Outline of Presentation

IKFS-2 characteristics and performances

Atmospheric sounding products: *atmospheric temperature and humidity profiles total ozone column (TOC) CO*₂ *column-averaged dry-air mixing ratio (XCO2)*

Assimilation trials

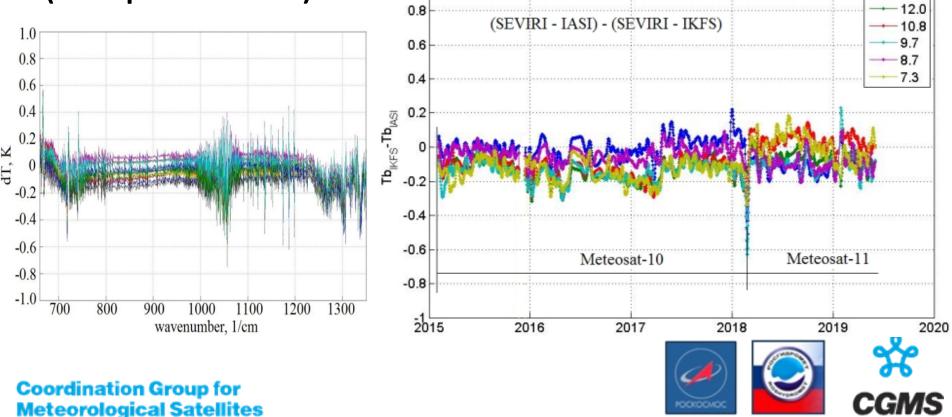

Technical characteristics of Russian promising FTIR spectrometers

Coordination Group for Meteorological Satellites - CGMS

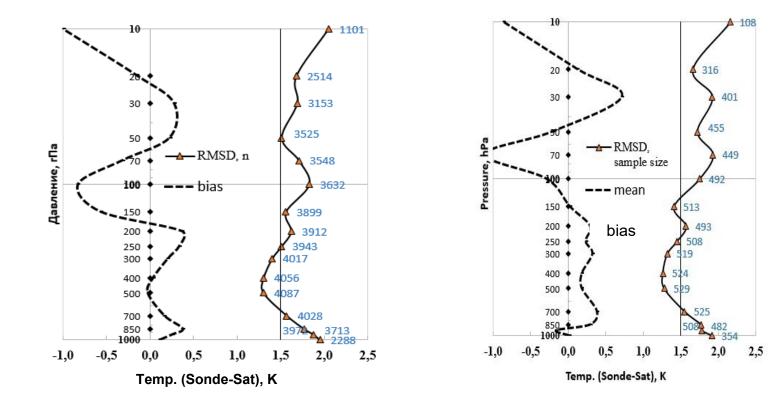
Parameter			Units	Value	
Spectral range: wavelength wave number			μm 5-15 cm ⁻¹ 2000-66		
Reference channel	wavelength	μm	1.06		
Maximum optical p	oath difference (OPD)	mm 17			
Radiometric noise (NESR)			mW·cm/m2·sr 0.15-0.		
Spatial resolution (at sub-satellite point	km	30		
Swath width and s	patial sampling	km	2500, 110 2000, 100		
Duration of the int	erferogram measure	S	0.6		
Mass		kg	45-50		
Power			W	50	
Spectral range	Absorption band Appli		ication		
665 to 780 cm ⁻¹	CO ₂	Temperature profile			
790 to 980 cm ⁻¹	Atmospheric window	Surface parameters (T $_{s},\epsilon_{\nu}$), cloud properties			
1000 to 1070 cm ⁻	03	Ozone sounding			
1080 to 1150 cm ⁻	Atmospheric window	$T_{s}, \epsilon_{v}\text{,};$ cloud properties			
1210 to 1650 cm ⁻	H ₂ O, N ₂ O, CH ₄	Moisture profile, CH ₄ , N ₂ O, column amounts			

Coordination Group for Meteorological Satellites

It was launched on board of the Russian Meteor-M No.2 polar-orbiting (or LEO) meteorological satellite on July 8, 2014, Equatorial Crossing Time 09:00 desc


The launches of the next4 instruments are scheduled for the LEO (inclination ~98.6°) satellites of Meteor-M series:

- 2021: No.2-3, ECT 09:00 desc
 - No.2-4, ECT 15:00 asc
- 2025: No.2-5, ECT TBD No.2-6, ECT TBD

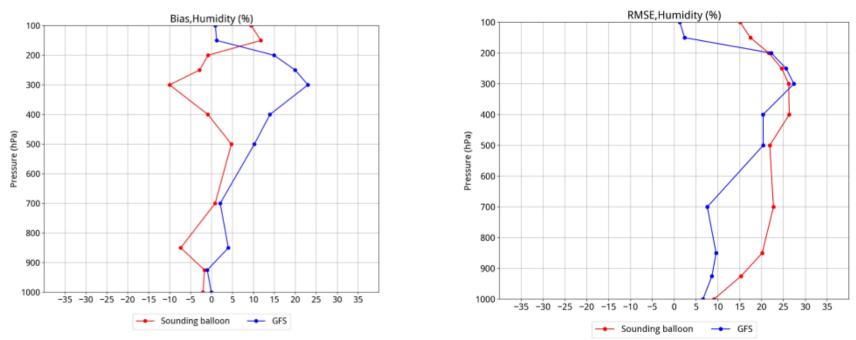

IKFS-2 characteristics and performances

Daily averaged (IKFS-IASI) BT differences from July 2015 to June 2017 (once per 2 months)

IKFS and IASI intercomparison results in different SEVIRI spectral channels by double differences method

13.4

Temperature Profile Error Statistics (retrievals vs radiosonde data)


The averaging period January-November 2018 (left side) and of March 2019 (right side)

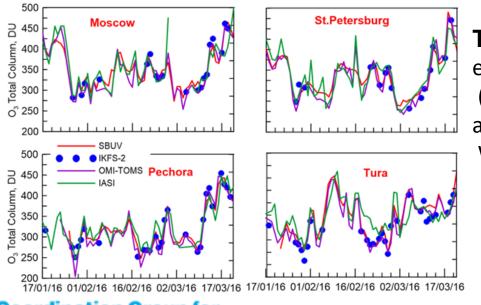
Coordination Group for Meteorological Satellites

Pressure, hPa

Relative Humidity Profile Error Statistics

At least 1000 pairs of comparisons with Global Forecast System data

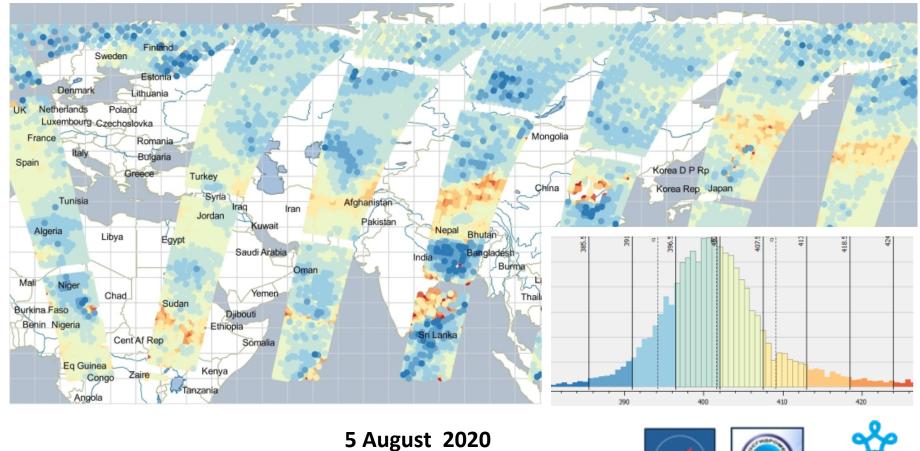
At least 300 pairs of comparisons with radiosondes


Russian Far-Eastern region July, 2020

Total ozone column (TOC)

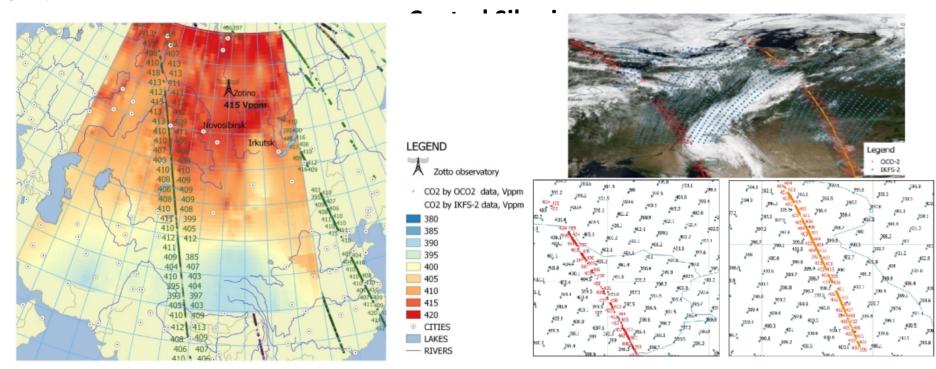
Comparison of TOCs estimates derived from different spectrometers data

Sensors	Marc	March-May		June-	June-August		Septen	September-November		
	R	Bias (%)	SD	R	Bias (%)	SD	R	Bias (%)	SD	
IKFS-2-OMI IKFS-2-GOME-2	0,99 0,98	-0,1 0,7	2,7 4,0	0,98 0,97	-0,1 -1,9	2,1 2,3	0,99 0,99	-0,1 -1,2	3,1 3,9	


Coordination Group for Meteorological Satellites

TOC evolution

estimated from different satellite data (IKFS-2, OMI, SBUV, and IASI) at several Russian ground- based stations. Winter 2016



Carbon dioxide mixing ratio (XCO2) distribution, ppm

CO₂ product validation: comparison of IKFS- 2 and OCO2-based XCO2 estimates (ppm)

8 April 2019

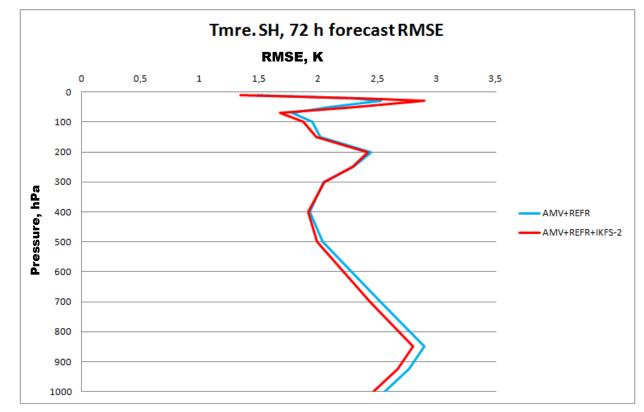
Discrepancy between two estimates in average are less than 5 ppm

Coordination Group for Meteorological Satellites

5 August 2020

Assimilation trials

Assimilation of infrared radiances (IKFS-2/Meteor-M No.2) in the Hydrometcenter of Russia


The following procedures were implemented:

- 1. The analysis of the IKFS-2 measurements accuracy, assessment of the biases (comparison with reference spectra)
- 2. A cloud filtering scheme (McNally and Watts, 2003)
- 3. A bias correction procedure (Gayfulin et al., 2017; Harris and Kelly, 2002)
- 4. Selection of channels subset (20 channels in the 15-µm CO2 absorption band)
- Numerical experiments on assimilation of IKFS-2 data (the 3D-Var system + SLAV global atmosphere model, Hydrometcenter of Russia):
 - forecasts, computed with the SLAV model and baseline data configuration (conventional data + AMV+REFR);
 - forecasts, computed with the baseline + IKFS-2 data.

Assimilation trials

Numerical experiments on assimilation of IKFS-2 data

RMSEs (K) of three-day temperature forecast in the Southern Hemisphere: without IKFS-2 data (blue) and with IKFS-2 data (red)

Coordination Group for Meteorological Satellites - CGMS

Planned/future hyperspectral infrared sounding

FTIR spectrometer	IKFS-3 2029 year	IKFS-GS 2030 year
Satellite platform	LEO Meteor-MP (SSO, 820 km, ECT TBD)	GEO Electro-M (GSO)
Spectral range	3.6-15.5 μm (645-2760 cm ⁻¹) LW: 645-1200 cm ⁻¹ MW: 1200-2000 cm ⁻¹ SW: 2000-2760 cm ⁻¹	LWIR: 700-1210 cm ⁻¹ MWIR: 1600-2250 cm ⁻¹
Spectral resolution	0.25 cm^{-1} (nominal) (MPD = 2 cm)	0,5 cm ⁻¹ (MPD = 1 cm)
Radiometric noise (NEdT@280K)	LW: 0.20.3 K MW: 0.20.5 K SW: 0.52.0 K	LWIR: 0.31.0 K MWIR: 0.31.8 K SW: 0.52.0 K
Radiometric calibration uncertainty	0.3 К	0.5 K
Field of view (at nadir)	IFOV: 14 km (17 mrad) FOV: 50x50 km2 (5 pixels)	8 km
Swath width & spatial sampling	2200 km 30 km	global coverage (60 min) regional coverage
IFG scan period	-	(10-11) s
Mass	120 kg	250-300 kg
Power consumption	120 W	300-400 W
Data rate	3 Mbit/s	150 Mbit/s

Thanks for attention!

Coordination Group for Meteorological Satellites

Roscosmos & Roshydromet, 20.08.2020