Future Polar Orbiting Meteorological Satellite Systems

STATUS OF PREPARATION OF METEOR-3M N1 POLAR ORBITING METEOROLOGICAL SATELLITE AND FUTURE METEOR-3M N2 SATELLITE

Summary and purpose of the WP

METEOR-3M N1 satellite is being prepared to launch at in November 2001 from Baikonur kosmodrom.

METEOR-3M N2 satellite sketch designing will be completed in 2001, the satellite launch is planned to 2004.

Satellites and payloads characteristics are presented.

Action proposed: no action required.

STATUS OF PREPARATION OF METEOR-3M N1 POLAR ORBITING METEOROLOGICAL SATELLITE AND FUTURE METEOR-3M N2 SATELLITE

METEOR-3M N1 SATELLITE

First polar orbiting meteorological satellite of Meteor-3M series is designed for operational providing of hydrometeorological and heliogeophysical information on the atmosphere, Earth surface and the World Ocean.

The METEOR-3M N1 satellite has been shipped to Baikonur kosmodrom on August 28th, 2001. Works on its launch preparation are presently under way. The satellite launch is planned in November 2001 (Zenith-2 launcher).

The spacecraft main parameters are the following:

Satellite mass 2500 kg Payload mass 800 kg Lifetime 3 years

The orbit parameters are the following:

Altitude $1018 \pm 10 \text{ km}$

Inclination 99.64°

Instruments payload of the METEOR-3M N 1 satellite is presented in Table 1.

Instruments payload of the METEOR-3M N 1 satellite

Table 1

Instrument / mass (kg)	Application	Spectral Band	Swathwidth (km)	Resolution (km)
MR-2000M1 46.6	Cloud cover mapping	0.5 - 0.8 μm	3100	0.7 x 1.4
KLIMAT 82.5	Global and regional cloud cover mapping, SST	10.5 – 12.5 μm	3100	3 x 3
MIVZA	Total humidity of the atmosphere	20.0-94.0 GHz (5 channels)	1500	80 – 40
MTVZA 100	Atmospheric temperature and humidity profiles	18.7-183.3 GHz (26 channels)	2600	12 – 75
MSU-E 29	Multispectral images of high spatial resolution	$\begin{array}{c} 0.5 - 0.6 \ \mu m \\ 0.6 - 0.7 \ \mu m \\ 0.8 - 0.9 \ \mu m \end{array}$	50 within FOV of 430	25 m

SAGE III	Profiles of aerosols ozone,	0.29 - 1.55 μm	-	1 - 2
88	NO ₂ , and other small	(9 channels)		(vertical)
	atmospheric gazes			
SFM-2	0_3 and other small	UV band		
	atmospheric gazes vertical			
	distribution			
KGI-4C	Heliogeophysics	0.1 keV –		
	Space environment	90 MeV		
	Monitoring (protons,	(11 channels)		
	electrons, alpha particles,			
	ions fluxes)			
	,			
MSGI-5EI	Heliogeophysics			
	Space environment			
	monitoring (geo-active			
	irradiances)			

METEOR-3M N2 SATELLITE

The second satellite of polar orbiting meteorological satellite of Meteor-3M series is designed for operational providing of hydrometeorological and heliogeophysical information on the atmosphere, Earth surface and the World Ocean as well as for global climate monitoring.

The basic characteristics of both spacecrafts including payload and their principal manufacturer have been specified in the beginning of 2001 through the tender organized by Russian Aviation and Space Agency (RASA) together with Roshydromet and other Russian State departments selected the satellite manufacturer. In 2001 the satellite sketch designing will be completed and development of technical documents will be commenced. Meteor-3M N2 launch on sun-synchronized orbit is planned to 2004 by Strela launcher from Svobodniy kosmodrom.

The spacecraft main parameters will be the following:

Satellite mass 750 kg
Payload mass 320 kg
Lifetime 7 years

The orbit parameters will be the following:

Mean altitude 835 km Inclination 98.68°

Instruments payload of the METEOR-3M N 2 satellite is presented in Table 2.

Instruments payload of the METEOR-3M N 2 satellite

Table 2

Instrument	Application	Spectral Band	Swathwidth	Resolution	Temperature

mass (kg) / power consumption (W)			(km)	(km)	retrieving accuracy (K)
MTVZA 80 / 80	MW radiometer for atmospheric temperature and humidity profiles	18.7-183.31 GHz (26 channels)	2800	9 – 50	1.5
GLOBUS 35 / 100	Dynamics and meteorological parameters of clouds, snow and ice cover.	0.5-12.6 μm (6 channels)	2900	1	1
IKFS-2 46 / 125	Fourie spectrometer for atmospheric temperature and humidity sounding and radiation budget assessment	5 – 15 μm	2500	Sampling 91-147 Spectral resolution 0.5 cm ⁻¹	1
KGI-4C	Heliogeophysics Space environment Monitoring (protons, electrons, alpha particles, ions fluxes)	0.2 keV – 90 MeV (11 channels)			-
MSGI-5EI	Heliogeophysics Space environment monitoring (geo-active irradiances)				-

The satellite instruments will allow global Earth surface and atmosphere observations each 12 hours; multispectral Earth surface and atmosphere observations; atmospheric temperature and humidity sounding in visible, IR and MW bands; radiation budget components measurements; heliogeophysical measurements; measurements of ozone and other small atmospheric gazes and data collection from DCPs.