

CGMS 45, Plenary Day1, Reports On New Developments And Programs By Members

JAXA GOSAT program status

Akihiko KUZE (JAXA EORC) June 15, 2017

Launch Vehicle and Orbit GOSAT Satellite Configuration

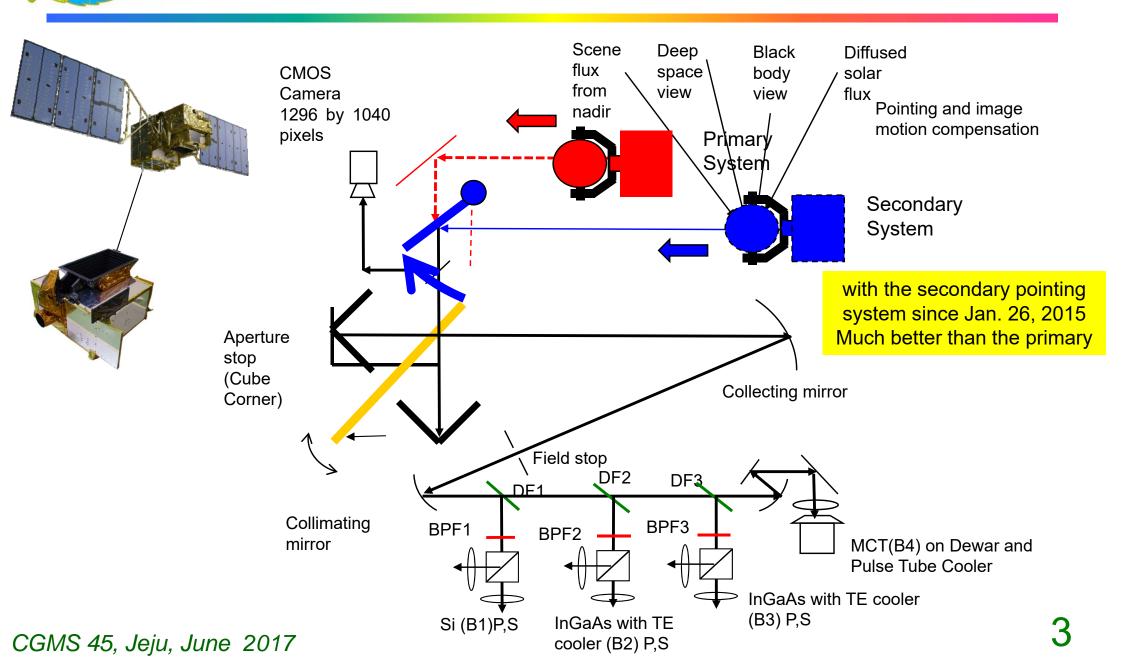
Size	Main body	3.7m(H) x1.8m(W) x 2.0m(D)(Except attachment)			
	Wing Span	13.7 m			
Mass	Total	1,750 kg			
Power	Total	3.8KW(EOL)			
Design Life	5 years				
Orbit	Sun Synchronous Orbit				
	Local time	13:00±0:15 (February 2015 - January 2016) 12:46-12:52			
	Altitude, inclination, period, revisit	666±0.6 km, 98.0±0.1 deg, 98.1 min, 3 days (44 rotations)			
Launch	Vehicle, date	H-IIA, Jan. 23, 2009			

One of the two solar paddles stopped its rotation. (June 2014) Still providing enough power for decade long observation

<u>Thermal And Near infrared</u> <u>Sensor for carbon Observation</u>

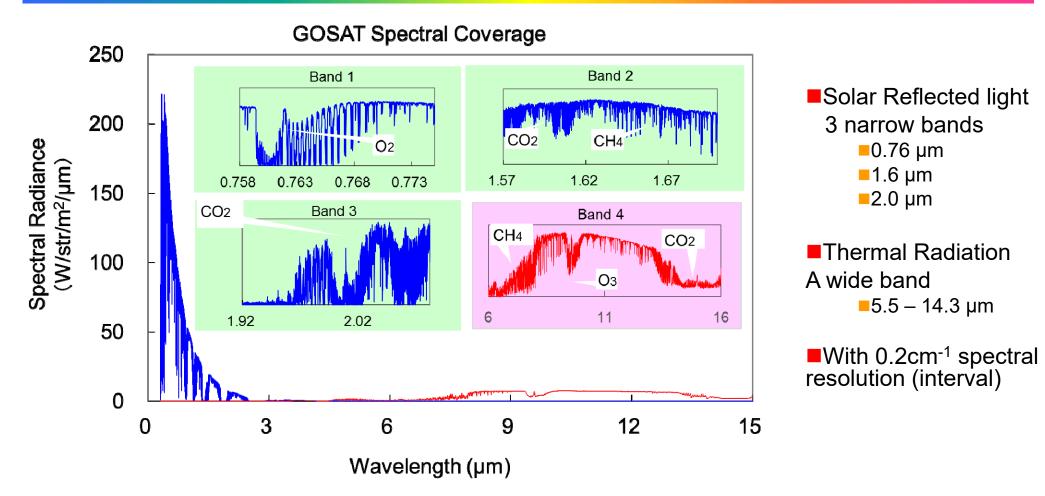
TANSO-CAI

UV, Visible, SWIR Imager

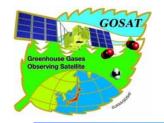

TANSO-FTS

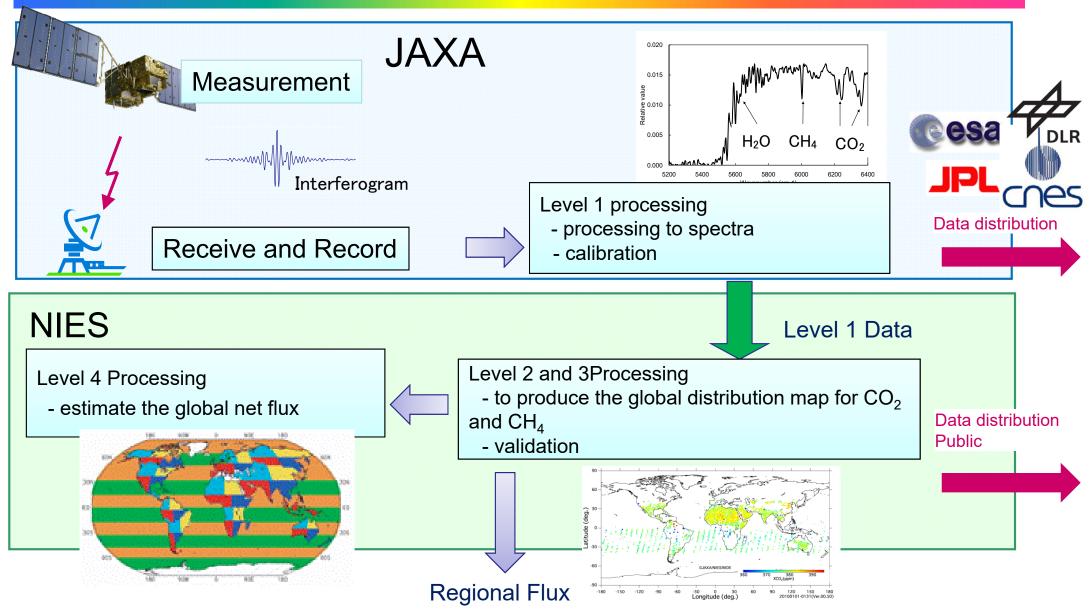
J XA

12:54, January 23, 2009 (JST

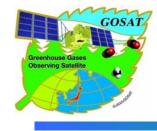

Combination of Pointing System and Spectrometer

FTS multiplex advantage: exact the same IFOV: SWIR, TIR, 2 linear polarization


Wide Spectral Coverage with a FTS


Column averaged density of CO₂ is mainly retrieved by using the absorption lines between 1.6 µm region.
The intensities of these lines are less temperature dependent and not interfered by other molecules.

■O₂ A band absorption at 0.76 µm: Dry air column


CGMS 45, Jeju, June 2017

GOSAT Data Products and Distribution

CGMS 45, Jeju, June 2017

GOSAT Operation and Research Progress since Launch

.aunch

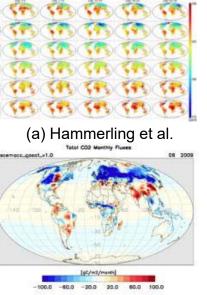
2017

Frequent and global CO₂ distribution

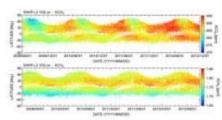
2011 Butz et al. the accuracy of 2 ppm or 0.5% for CO₂ and 13 ppb or 0.7% for CH₄

Global flux inversion (b)

2011 Joiner et al. and Frankenberg et al. Solar induced Chlorophyll Fluorescence

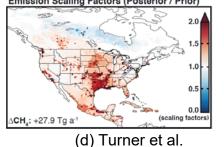

Long term CO2 and CH4 (c)

2015 Turner et al. (d) North American CH₄ emissions using prior information on source locations <aggregation, emission source classification>


Flux Emission from CH₄ point sources

Goal City level CO₂ flux estimation with source classification

CGMS 45, Jeju, June 2017



(b) Houweling et al.

(c) NIES/JAXA/MOE

Emission Scaling Factors (Posterior / Prior)

CH₄ globally

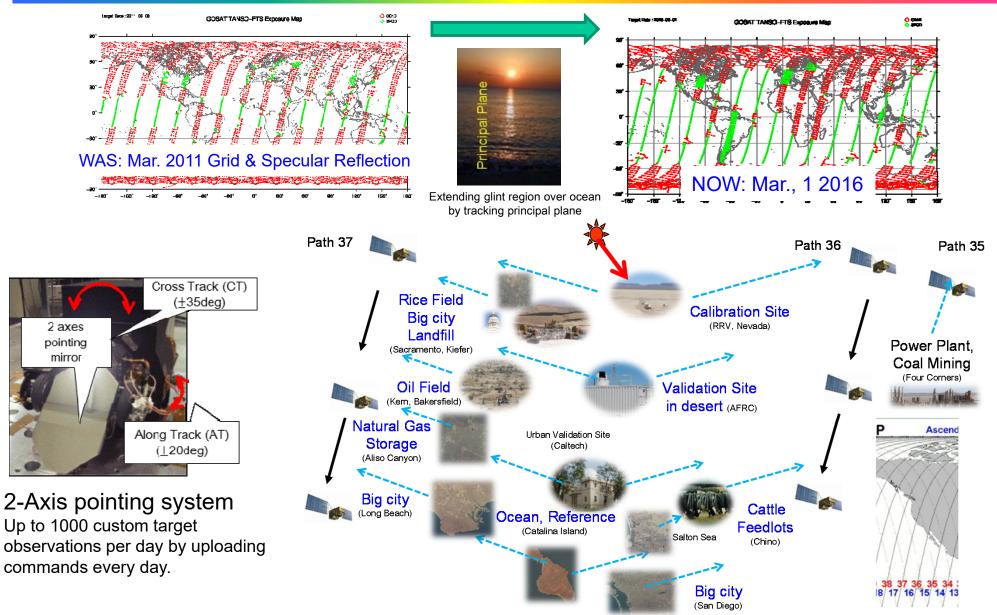
Data Processing

Feb. 2009 The first very-high spectral resolution spectrometer to measure columnaveraged dry air mole fractions of CO₂ and

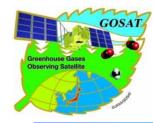
Instrument

Non linearity corrections

Jul. 2014 OCO-2 launch

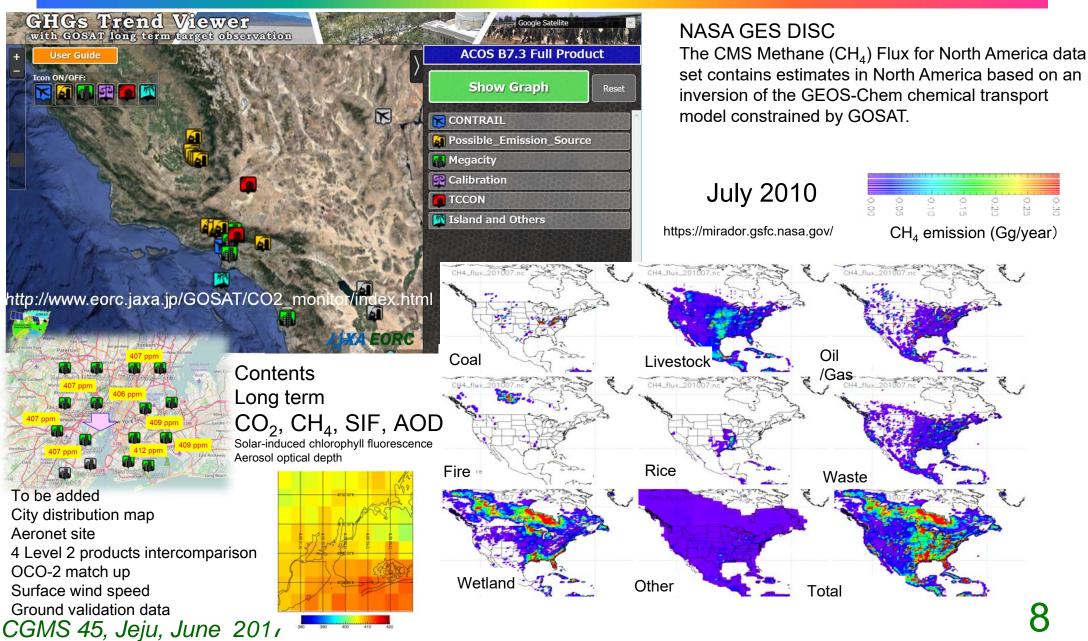

Pointing mechanism switched to the secondary (Jan. 2015) 2-axis agile pointing system effectively collects science data over regions and areas of special interest.

Level 1 V201 (2015)Long-term uniform quality data set

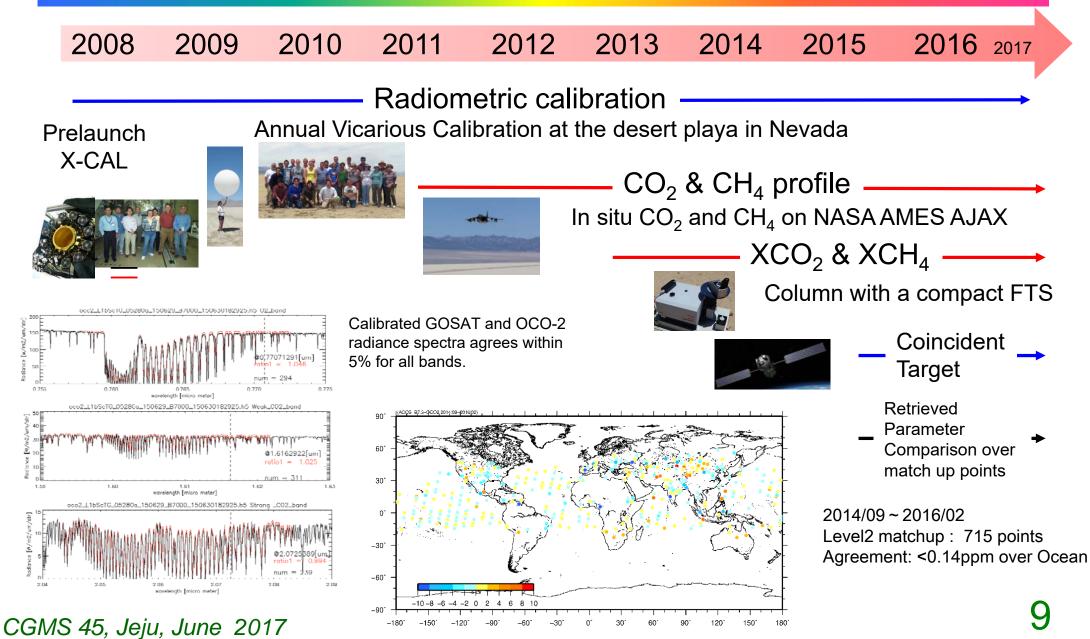

n

Flexibility with Target Observation

Optimized sampling pattern for flux estimation with an agile pointing system



CGMS 45, Jeju, June 2017


GHG Trend Viewer and NASA GES DISC

CMS (Carbon Monitoring System) Methane (CH₄) Flux for North America 0.5 degree x 0.667 degree

Toward GHG satellites constellation Inter-comparison between GOSAT and OCO-2

GOSAT-2

TANSO-FTS-2

Characteristics

.

Life	5 years			
Orbit	Sun-Synchronous (628km)			
Mass	About 2 t			
Launch	FY 2018			
Observation Valuables	CO_2 , CH_4 and CO Accuracy: 0.5 ppm (CO_2) and 5 ppb (CH_4) at 500-km mesh over earth's surface			

TANSO-CAI-2

- 1. Simultaneous CO (carbon monoxide) measurement
- 2. All target mode capability
- 3. Cloud-avoiding pointing with onboard camera

	Band 1	Band 2	Band 3	Band 4	Band 5			
Target Gases	O ₂	CO ₂ , H ₂ 0	CO ₂ , CH ₄ , CO, H ₂ 0					
Spectral Coverage (µm)	0.75-0.77	1.56-1.69	1.92-2.33	5.5-8.4	8.4-14.3			
Spectral Coverage (cm-1)	12,950 - 13,250	5,900 - 6,400	4,200 - 5,200 1,188 - 1,800		700 - 1,188			
Spectral Resolution	0.2 cm ⁻¹							
Exposure	4 sec							
IFOV	9.7 km							
Pointing	±40 deg. (Along track), ±35 deg. (Cross track)							
Polarimetry	Yes (P and S channels)			No				

TANSO-FTS-2

TANSO-CAI-2 (radiometer)

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
Spectral Band (nm)	333 - 353	433 - 453	664 - 684	859 - 879	1585 - 1675	370 - 390	540 - 560	664 - 684	859 - 879	1585 - 1675
Tilt		+20 deg. (Forward viewing)				-20 deg. (Backward viewing)				
Spatial Resolution	460 m 92			920m	460 m				920m	
Swath	920 km									

Conclusion and Future Plan

- 1. The first high spectral resolution FTS from 0.76 to 15 μm with two linear polarization has contributed to understand radiative transfer in the Earth's atmosphere.
- 2. With updated molecular spectroscopy and retrieval of light path modification from O_2A band, precise and accurate XCO_2 and XCH_4 has been achieved. Uncertainty in global flux has been reduced.
- 3. Frequent updates in non-linearity correction in level 1 processing has improved consistent data set from dark to bright desert target.
- 4. International collaboration on calibration, validation, and retrieval algorithm has demonstrated the effectiveness of the GHG monitoring rom space.
- The agile pointing system and daily observation planning has been maximizing good quality data. However, further modification is needed to optimize the sampling pattern for CO₂ and CH₄ flux estimation.
- 6. Simultaneous measurement of short-lived spices such as NO_2 and CO, and imaging capability, wind speed information will improve anthropogenic GHG emission estimation.
- 7. Solving puzzles to estimate emission amount of individual emission sources will provide effective GHG anthropogenic reduction. CGMS 45, Jeju, June 2017