Coordination Group for Meteorological Satellites - CGMS

CMA NWP Impact Assessment of Satellite data

Presented to CGMS-49 plenary session, agenda item [05]

Coordination Group for Meteorological Satellites

Optical Imager

Main Instruments

Satelli	te	No. of Instruments	Name in Abbrev.					Atmospher				
FY-1	FY-1 A/B	2	5-channel VIRR					Microwave	Ima	ger		
	FY-1 C/D	2	10-channel VIRR					Atmospher	ie C	ompositi	an	
FY-2	FY-2 A/B	1	3-channel VISSR					A tuos pilo i	10 0	ompositi	011	
	FY-2 C/D/E	1	5-channel VISSR					Radiation	Bud	get		
FY-3	FY-3 A/B	10	10-channel VIRR					nauravion	Baa	500		
			MERSI			a				b		
			IRAS		0.35	FY-	-3A/MWTS TOP/AMSU-/	A] ⁱ	2.5 FY-3A/MWH		
			MWTS	Ie			TOP/AMISU-/	<u> </u>	e (X)	2 L		
			MWHS	Jepartu	2200 (K) 200 - 220 200 - 200 200 - 2				First Guess Departure Standard deviation (K)	1.5 -		
			MWRI	Guess D	ard de 0.15				Suess [1_		
			SBUS	First (Stand				First (0.5 –		
			του		0.05	•						
			ERM		0 L	53.596		54.94 57.29 Jency (GHz)		0 183±1	183±3 equency (GHz)	1
			SIM		1.4	C			Г	14 FY-3A/MWRI		
	FY-3C	11	GNOSS		1.2	- M ET		n		12 - EOS/AMSR-E		
	FY-3D	10	HIRAS	barture	1 (K)				barture tion (K)	10 -		
			GAS	ess Dep	8.0 deviat				ess Dep d devia	8-		
	FY-4A	3	AGRI	First Guess Departure	tandar				First Guess Departure Standard deviation (K)			
Y-4			GIIRS		0.2				1 2 3	2 -		
			LMI		٥L	703 716	733 74	9 1364 1534 2210 223		o	18.7h 23.8v 23.	

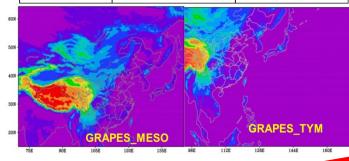
ECMWF, 2011: The data quality is now comparable to that from equivalent US and European meteorological satellites

Impact assessment

- CMA
 - ✓ NWP
 - ✓ Global Reanalysis
- International NWP Communities
 - ✓ ECMWF
 - ✓ UK MetOffice
 - ✓ Others

GRAPES

(Global/Regional Assimilation and Prediction System)


GRAPES_GFS

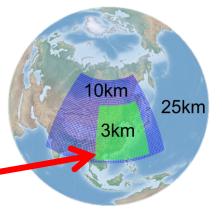
Grid size: 25 km

GRAPES_Meso

Unu size. ZJ Kill
Layers: 87(~0.1hPa)
Forecast range:
cyclic system
240 h fcst. at 00 and 12 UTC
DA: 4DVar

	System	GRAPES_MESO	GRAPES_TYM						
	Domain	70º~145ºE, 15º~64ºN	90º~171ºE, 0º~51ºN						
	Model Top	50hPa	50hPa						
	Resolution	0.10º/L50	0.10º/L50						
	Initial Time	3-hourly cycle	00UTC、12UTC						
1	Analysis	3DVAR + cloud analysis	GFS						
	Vortex	NO	Relocation+						
	initialization		BOGUS						
	Forecast length	00 & 12UTC 84h	120h						
	Physics	RRTM LW Dudhia SW WSM 6 KF-eta Monin-Obukhov NOAH MRF PBL	RRTM LW Dudhia SW WSM 6 SAS Monin-Obukhov SLAB YSU						

GRAPES_Meso-3km


Grid size: 3 km

Layers: 50(~50hPa)

Forecast range:

36h at 00, 12UTC

Analysis	GRAPES_GFS + cloud analysis
Physics	RRTM LW Dudhia SW WSM 6 Monin-Obukhov NOAH MRF PBL

Satellite observations assimilated in GRAPES

Foreign satellites

Instruments	Observations						
AMSU-A (NOAA-15/18/19, Metop-A/B)	Microwave (T), Radiance						
MHS (NOAA-18,19, Metop-A/B),	Microwave (H), radiance						
ATMS(NPP)	Microwave (T, H), radiance						
AIRS (Aqua),	Infrared (T), radiance						
IASI (Metop-A/B)	Infrared (T), radiance						
RO (COSMIC-1/2, Metop-A/B/C,	Refractivity						
PAZ,KOMPSAT-5, TerraSAR-X,							
TanDEM-X)							
ASCAT(Metop-A/B)	Wind						
AMV(METEOSAT-9,MODIS, etc)	Wind						

Fengyun satellites

Instruments	Observations
MWTS-2 (FY-3D)	Microwave (T), radiance
MWHS-2 (FY-3C/D)	Microwave (H), radiance
HIRAS (FY-3D)	Infrared (T), radiance
MWRI(FY-3D)	Microwave (H), radiance
GNOS (FY-3C/D)	refractivity
GIIRS(FY-4A)	Infrared (T), radiance
AGRI (FY-4A)	Infrared (H), radiance
VISSR(FY-2H)	Infrared (H), radiance
AMV(FY-2)	wind

Polar-Orbiting

MWTS-2 (MicroWave Temperature Sounder-2) MWHS-2 (MicroWave Humidity Sounder-2) HIRAS (Hyperspectral Infrared Atmospheric Sounder) MWRI (Micro-Wave Radiation Imager) GNOS (GNSS Radio Occultation Sounder)

Geostationary

GIIRS (Geostationary Interferometric Infrared *Sounder*) AGRI (Advanced Geostationary Radiation Imager) VISSR (Stretched Visible and Infrared Spin Scan Radiometer)

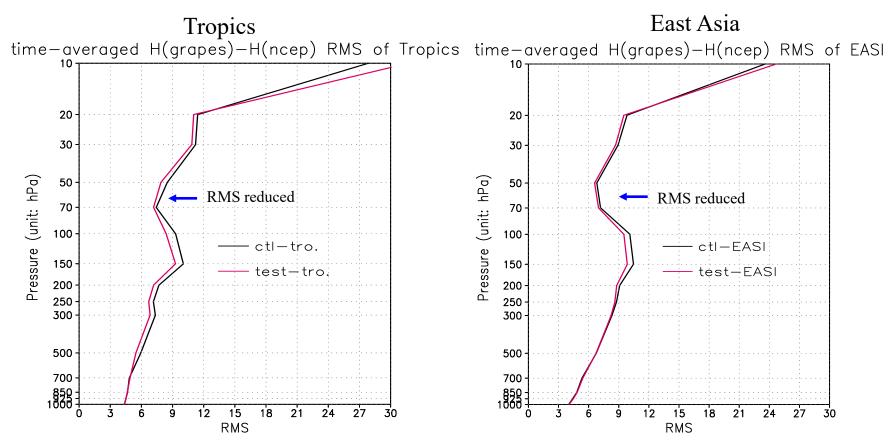
Impact experiment of Fengyun satellite observations

Assimilation Experiments Settings:

System: GRAPES_GFS 4Dvar

Time period: 2019050103UTC – 2019063021UTC

Experiments: CTL experiment, TEST experiment


Experiments	Data assimilated
CTL	conventional observation (sound, synop, ships, air, satob), AMSU-A(NOAA- 15/18/19, Metop-A/B), ATMS,AIRS, IASI(Metop-A/B), MWHS-2(FY-3C/D) , GIIRS(FY-4A) and GPS RO, ASCAT
TEST	CTRL+FY-3D HIRAS, MWTS-2, MWRI, FY-2H VISSR, FY-4A AGRI, FY- 3D GNOS

HIRAS (Hyperspectral Infrared Atmospheric Sounder) MWTS-2 (MicroWave Temperature Sounder-2) MWHS-2 (MicroWave Humidity Sounder-2) GNOS (GNSS Radio Occultation Sounder) MWRI (Micro-Wave Radiation Imager) VISSR (Stretched Visible and Infrared Spin Scan Radiometer) AGRI (Advanced Geostationary Radiation Imager)

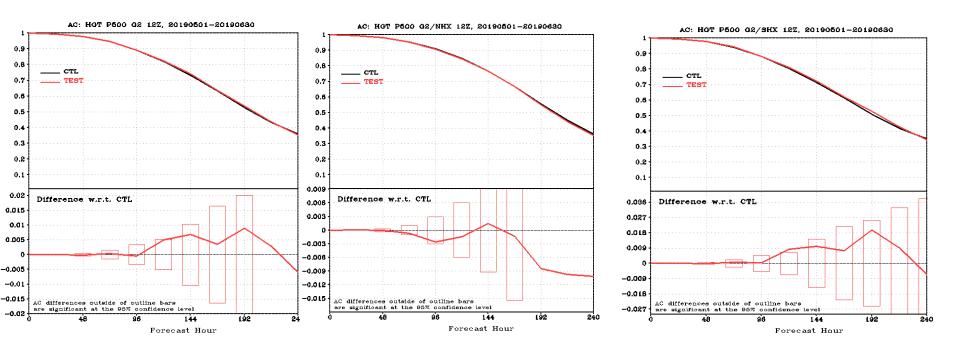
Impact on analysis field

positive impact

20190501-0630 HRMS

RMS of geopotential height from the analysis field difference between CTL and NCEP (black), TEST and NCEP (red)

Impact on forecasts

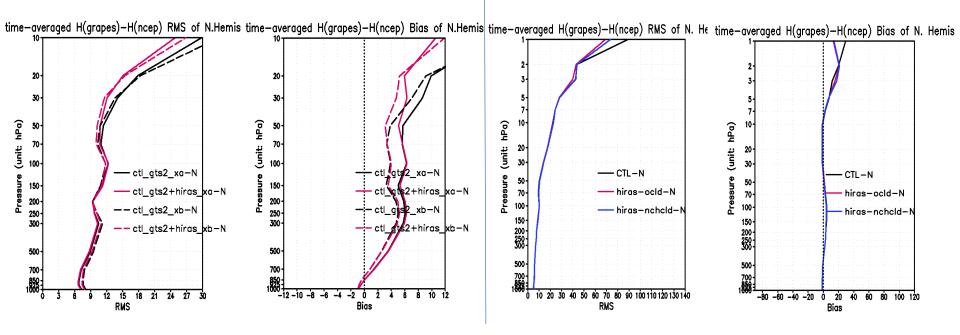

Neutral to positive impact

20190501-0630 500hPa H ACC

Global

Northern Hemisphere

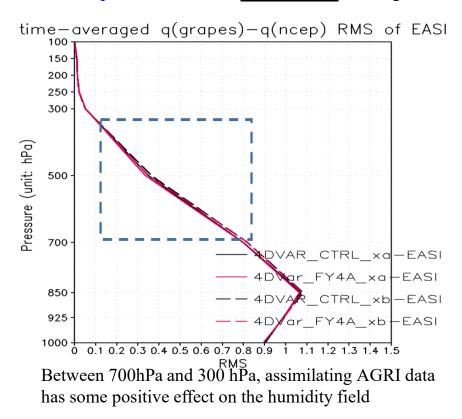
Southern Hemisphere

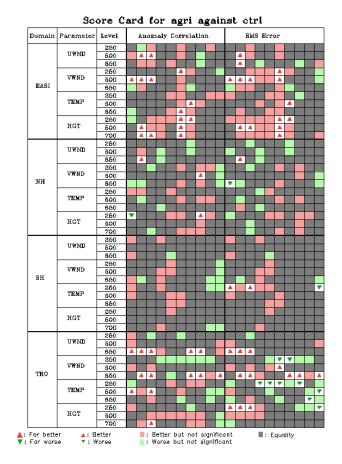

Mean ACC of 500 hPa geopotential height of CTL (black) and TEST (red)

Impact of FY-3D HIRAS (June 2019)

Conventional observations + FY-3D HIRAS

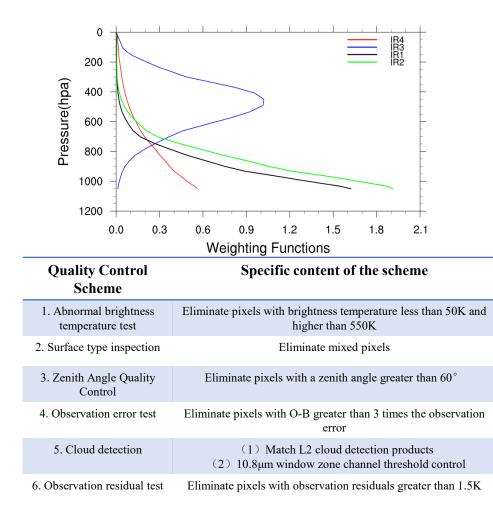
All observations + FY-3D HIRAS


RMS of geopotential height from the analysis field difference between CTL and NCEP (black), TEST and NCEP (red)


Positive impact

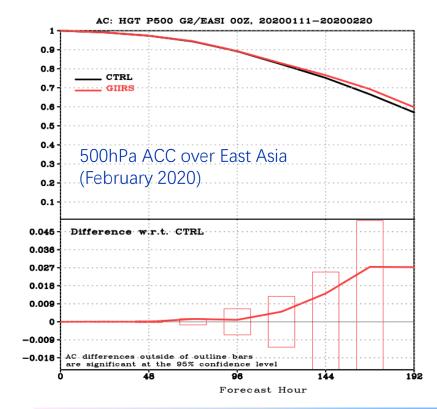
Neutral to positive impact

Assimilation effect of AGRI data

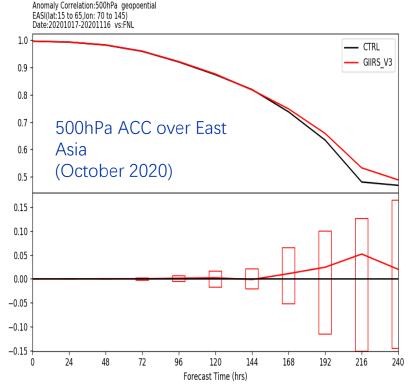

Root mean square of East Asia vapour field of background and analysis

Compared with the control test. The forecast results are generally n eutral and positive. For East Asia and the Tropic, is generally positive, while the northern hemisphere and the southern are neutral.

FY2H VISSR data Quality Control and Assimilation effect

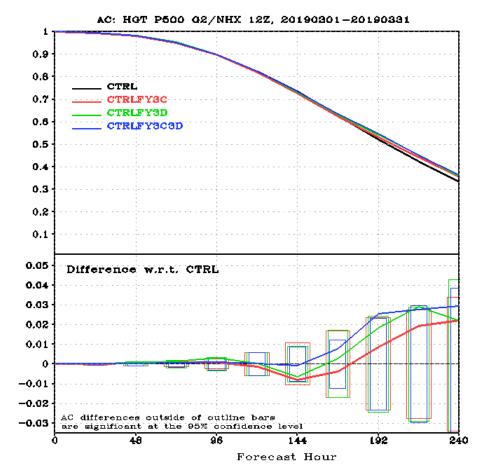


Domain	Parameter	Level		An	or	aly	C C	orr	ela	tio	n		RMS Error								
		250										•									ſ
	U₩ND	600																			ſ
		850																			I
		250										•									ľ
	VWND	500									•										Г
EASI		850																			t
		250																			Ì
	TEMP	500																۸			l
		850																۸			ſ
		250										-						۸			t
	HGT	500									•							۸			t
		700							-	_		-									t
		250																			f
	UWIND	500					-														t
		850			-						-										t
		250		-			۸		4	٨				-							t
	VWND	500					-		-								-	-	-		t
NH		850			-	-	-		-	-					-	-		-		-	t
		250		-														-		-	ľ
	TEMP	500																			t
		850			٨		-	Ā	4	_					۸		-	-	-		ł
		250	•						-						-				-		t
	HGT	500	Ľ			_	-	-	-				-		-		-	-	-		ł
		700		-				-	-									-	-		ł
	UWND	250		-						_											t
		500	-			-				_			-								ł
		850									-						-				t
	VWND					_			_									_			ł
		250 500							-												ł
SH		850					-		-					-							ł
		250			4		-							•							ł
	TEMP	500	-		-					_							-				ł
						_					-						-				ł
		850				_				_											ł
	HGT	250				_	_			_								_			ł
	1 191	500																			ł
		700 250																			ŀ
	UWND				_		_			_					_						
	ONIND	500		•	•		•							•	•	•	•				ł
		850							-	4									4		ł
	VWND	250																			l
TEO	VWMD	500																_			ļ
TRU		850							۸	٠	۸							٠	٠	۸	l
	TRACT	250										•				•	•	•	•		ļ
	TEMP	600		•	•	۲	•	•							•	•	•				l
		850																			l
	71.00	250	•	•									•	•	•		•				l
	HGT	500												•	•	•	•				l
		700								۸										۸	ĺ
Far bette	er _∆:⊟					a++.							Int						ality		

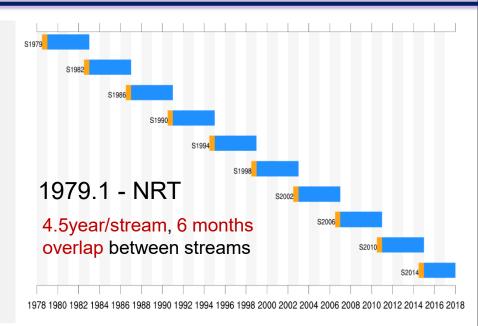

Score Card for visar against ctrl

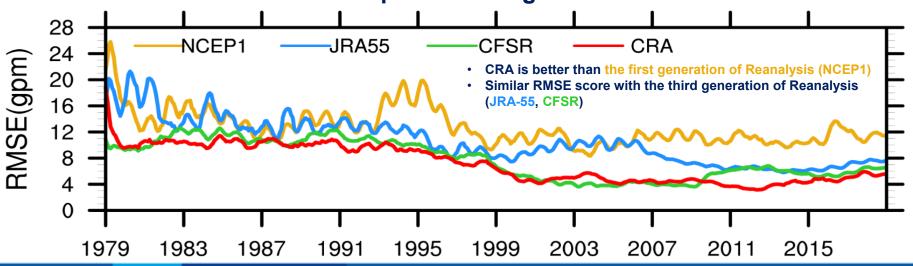
Impact of FY-4A GIIRS on Forecast over East Asia

GRAPES gloal 4D-Var CTRL : OPER GIIRS : OPER + GIIRS Temp. Sounding Radiaces



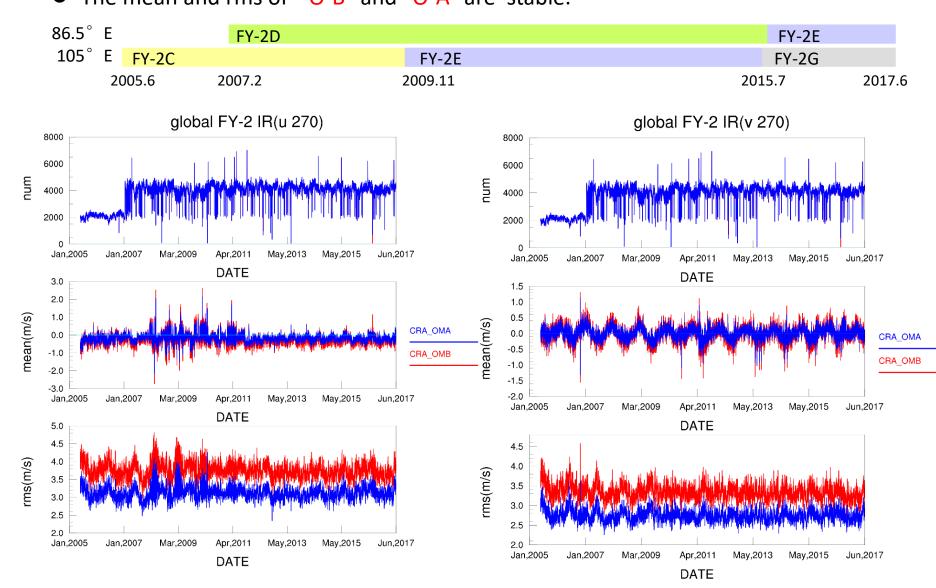
Assimilation of GNOS Data in GRAPES


- Anomaly correlation as a function of forecast day for four different experiments:
 - **CTRL** (assimilation of all operational obs. except for GNOS)
 - **CTRLFY3C** (CTRL+FY3C)
 - **CTRLFY3D** (CTRL+FY3D)
 - **CTRLFY3C3D** (CTRL+FY3C+FY3D)
- Assimilation of GNOS data in GRAPES produces a positive impact on global medium range forecast.

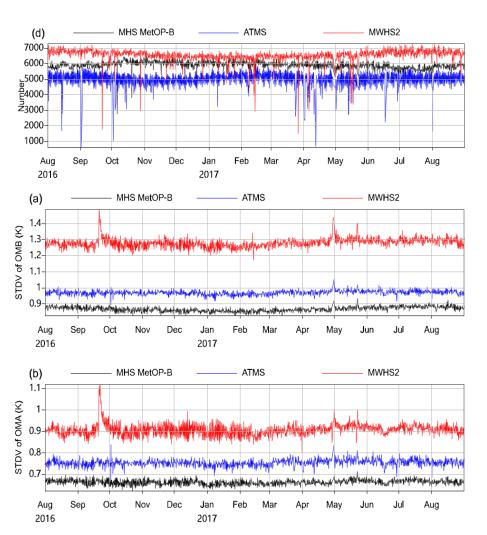

CMA Global Reanalysis

Courtesy of Lipeng Jiang

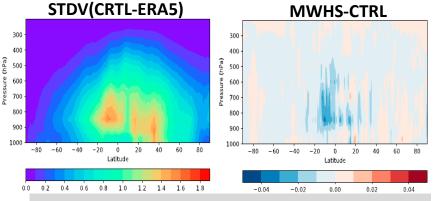
- Started in early 2014, led by the National Meteorological Information Center (NMIC) of CMA
- Include Atmosphere and Land component
- Forecast Model: GFS T574 (~ 34km), 64L, top at 0.27hPa (~55km)
- Data Assimilation: GSI3Dvar-FGAT 6-h time window VarBC for aircraft T and satellite radiances
- Finished the production in 2019



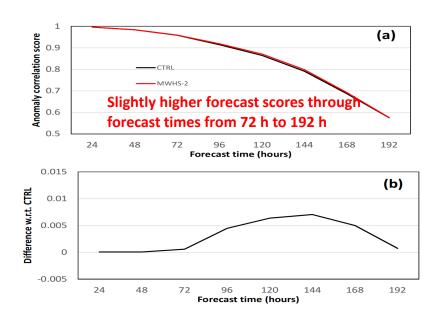
500hPa Geopotential height Error w.r.t. ERA5


13 years of Reprocessed FY-2 AMV by NMSC were assimilated in CRA

Reprocessed FY-2C/D/E/G IR AMV (20005.6-2017.6) AMV were used in CRA
The mean and rms of "O-B" and "O-A" are stable.


FY-3C MWHS-2 were assimilated in CRA since July, 2016

- The number of observations passed QC is stable
- Comparable STDV with ATMS and MHS w.r.t. CRA 6h forecast



Impacts of MWHS-2 on 6h Forecasts

Improve 6h forecast scores compared with ERA5. Error reduction can be up to 0.04g/kg in tropical region.

Zonal-mean cross-section of specific humidity 6h forecast

FY-3C GPS-RO were assimilated in CRA since March, 2016

- GPS-RO bending angle were assimilated.
- The bias and RMS are stable.

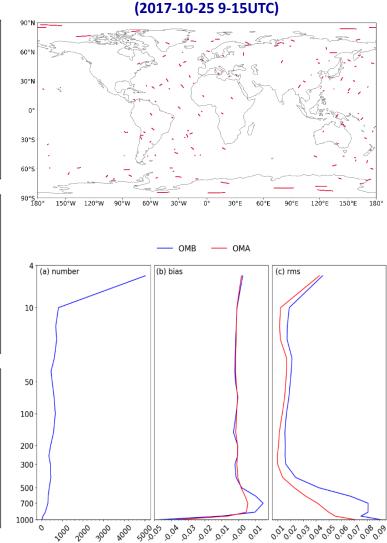
2016-02

2016-05

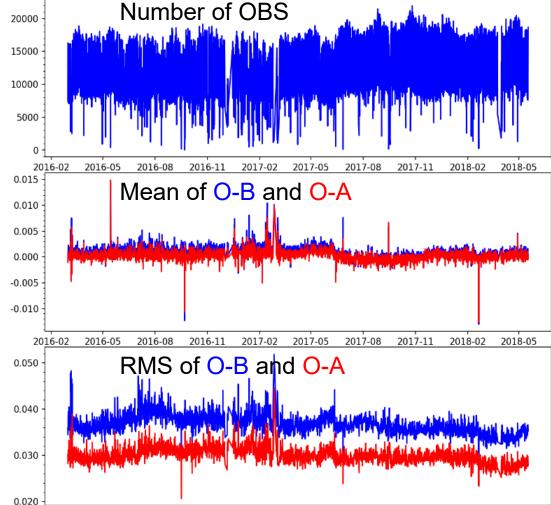
2016-08

2016-11

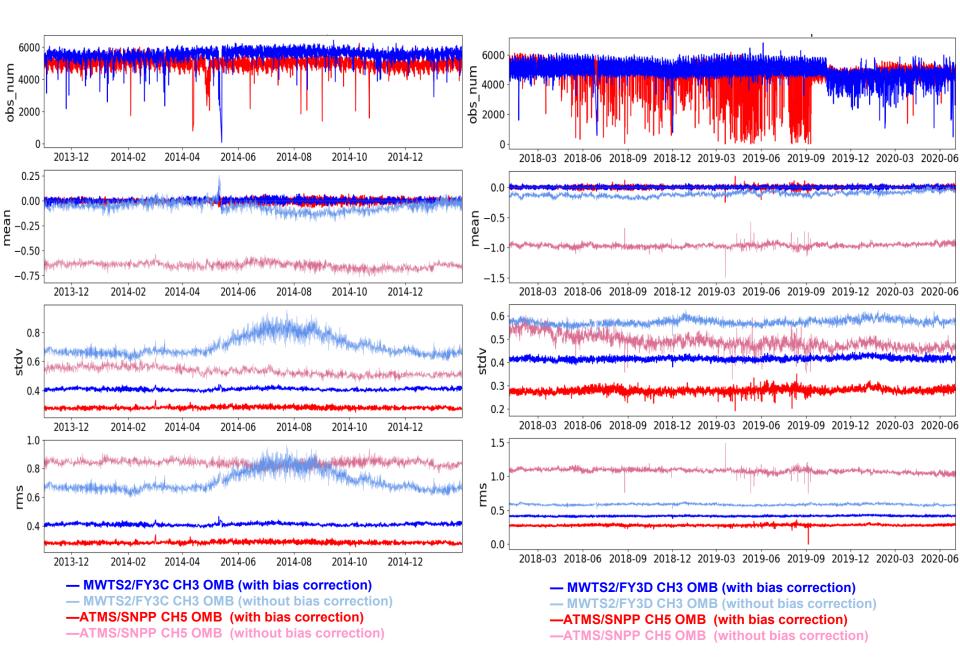
2017-02


2017-05

2017-08


2017-11

2018-02


2018-05

Spatial distribution within 6h time window

Evaluation of Reprocessed FY-3C/D MWTS against CRA

International NWP Communities

https://link.springer.com/journal/376/topic alCollection/AC_0e45b9611a5764787939af a59a5a8cbc/page/1

Meeting Summary		
The First Fengyun Satellite International User Conference		
Di Xian, Peng Zhang, Meng Fang, Chang Liu, Xu Jia		
» Download PDF (684KB)	Pages 1-4	
Data Description Article		
Fengyun Meteorological Satellite Products for Earth System Scier	nce	
Applications		
Di Xian, Peng Zhang, Ling Gao, Ruijing Sun		
» Download PDF (3240KB)	Pages 1-18	
Original Paper		
Growing Operational Use of FY-3 Data in the ECMWF System		
Niels Bormann, David Duncan, Stephen English		
» Download PDF (3951KB)	Pages 1-14	
Original Paper		
Insights into the Microwave Instruments Onboard the Feng-Yun 3	D Satellite:	
Data Quality and Assimilation in the Met Office NWP System		
Fabien Carminati, Nigel Atkinson, Brett Candy		SPECIAL I
» Download PDF (2270KB)	Pages 1-18	Fengyun M Data, Appli

dvances in transported by the second second

SPECIAL ISSUE ON

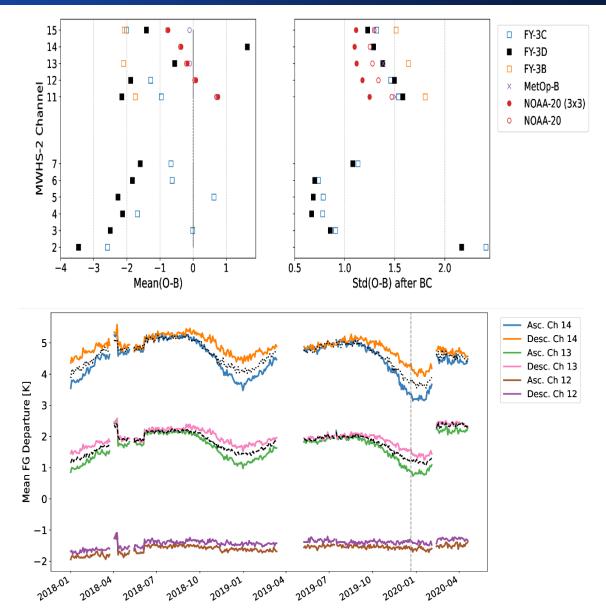
Fengyun Meteorological Satellites: Data, Application and Assessment

CN 11-1925/04

Table 1. FY-3 instruments assimilated in the operational ECMWF system.

Satellite Launch Instr		Instrument	Main impacts	Period of use
FY-3B (afternoon satellite, present ECT of 1600)	4 Nov 2010	MWHS-1	Mid- and upper-tropospheric humidity, dynamics	24 Sep 2014 to 1 Jun 2020ª
FY-3C (morning satellite, present ECT of 0900)	23 Sep 2013	MWHS-2	Mid- and upper-tropospheric humidity, clouds, dynamics	Since 4 Apr 2016
		GNOS	Upper-tropospheric/lower- stratospheric temperature/dynamics	6 Mar 2018 to 17 May 2020b
FY-3D (afternoon satellite, present ECT of 1400)	14 Nov 2017	MWHS-2	See above	Since 2 Dec 2019
r ,		MWRI	Total column water vapor, clouds, dynamics	Since 13 May 2020
		GNOS	See above	Activation planned 2021

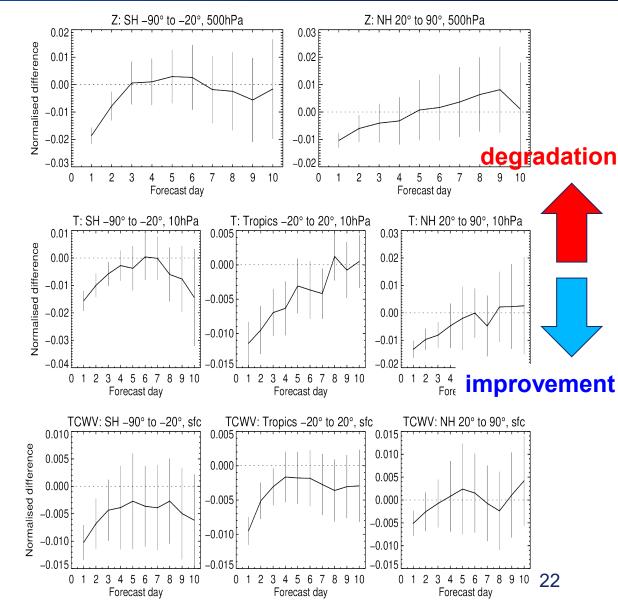
Satellite	Present orbit position (LTAN, approx.)	MW temperature sounder	MW humidity sounder	MW imager	IR broadband sounder or imager	IR hyper- spectral sounder
NOAA-15	19:00	A	×		x	
NOAA-18	21:00	A	x		x	
NOAA-19	17:00	A	A 🖏		P	
NOAA-20	13:30	A	A			A
Aqua	13:30	A	x			A
S-NPP	13:30	A	A			A
Metop-A	21:00	A	A 🖏		P	P
Metop-B	21:30	A	A 🐑		P	A
Metop-C	21:30	A	A Co			A
FY-3B	16:00	×	A	x		
FY-BC	10:00	×	A Čo	P Č,		
F(-30	13:30	PAE	P&E	P & E 🖏		E
Meteor-M N2	20:30					E
DMSP-F17	18:30		A 🖏	A 30		
DMSP-F18	17:00		A 🖏	P Č		
GCOM-W1	13:30			A Č		
Coriolis	18:00			P 🖏		
GPM	Low-ind.		A 🖏	A 🖏		
Megha-Tropiques	Low-ind.		P 🐑			
Meteosat-8	41.5°E				A	
Meteosat-11	00				A	
GOES-15	128°W				A	
GOES-16	75.2°W				A	
Himawari-8	140.7°E				A	
FY-4A	105°E					E


A-Assimilated, P-Passively Monitored E-Under Evaluation X=Failed/withdraw

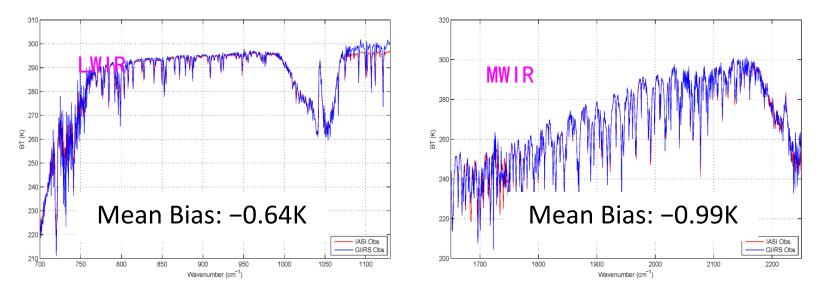
ECMWF

🖄 – All-sky treatment

FY-3 MW data quality assessment


The data show mostly stable characteristics, with expected noise performance and adequate accuracy.

Bormann et al., 2021

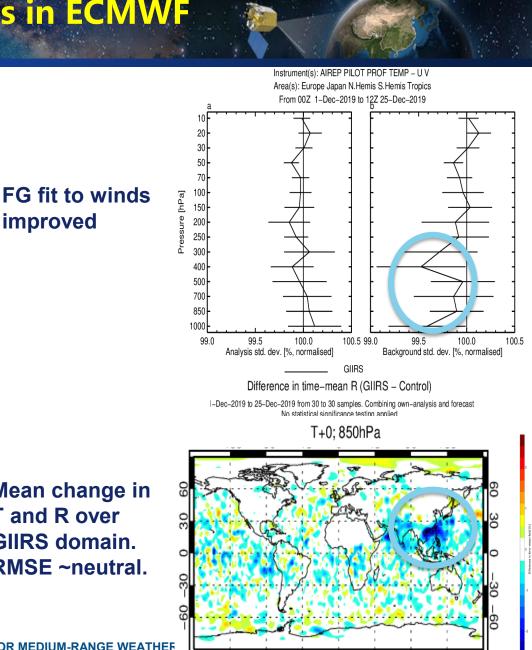

Combined impact of FY-3 data on ECMWF system

- An observing system experiment shows that the FY-3 instruments jointly contribute significantly to the forecast skill in the ECMWF system.
- Positive impact of up to 2% is seen for most variables out to the day 2 forecasts over hemispheric scales
- significant benefits for total column water vapour or in the stratosphere out to day 4

The initial evaluation results of GIIRS

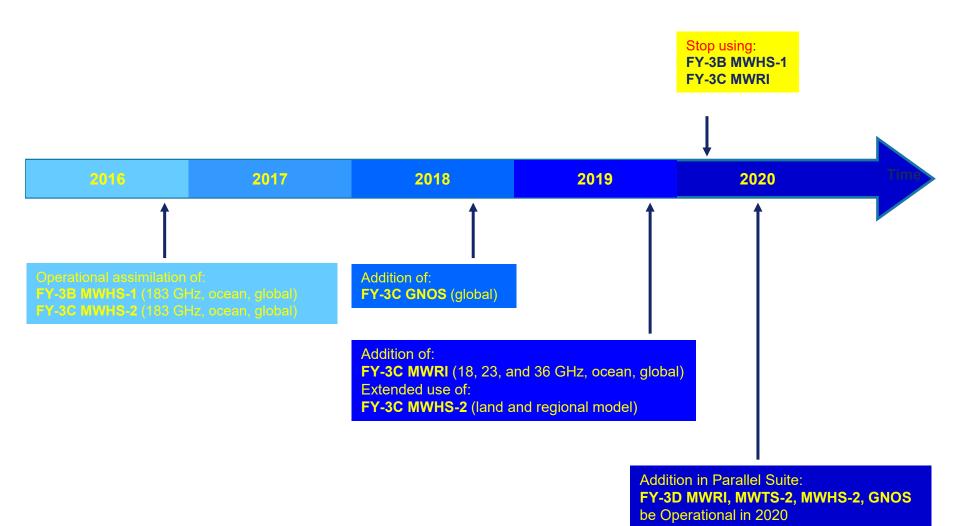
- The on-orbit spectral resolution for LWIR and MWIR are 0.625cm⁻¹, better than the specified (0.8/1.6 cm⁻¹), similar to NPP/CrIS;
- The NEDT for all the 1650 channels except some contaminated channels, generally is less than 0.1K, consistent with the specified;
- The comparisons of LWIR and MWIR with the counterpart channels from METOP-A/IASI shows that the calibration difference is about 0.64K and 0.99K separately, spectral difference is about 8ppm.

Spectrum Comparison with METOP/IASI

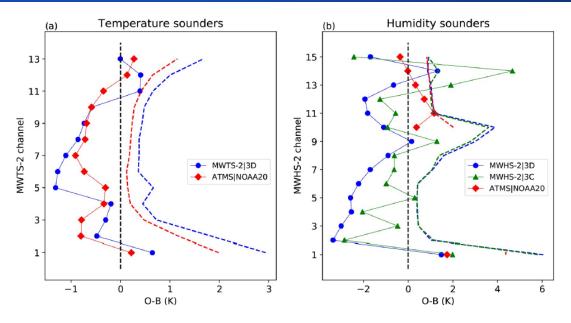

GIIRS progress and plans in ECMWF

- many channels are now useable.
- IFS is set up and several experiments are running, testing:
 - Channel selection
 - Spatial thinning
 - **Observation errors**
 - **Cloud detection**

Early days for such a new observation type, so mixed results initially, but a project has just started with EUMETSAT to take this further and converge on an optimal assimilation strategy.


Mean change in T and R over **GIIRS** domain. **RMSE** ~neutral.

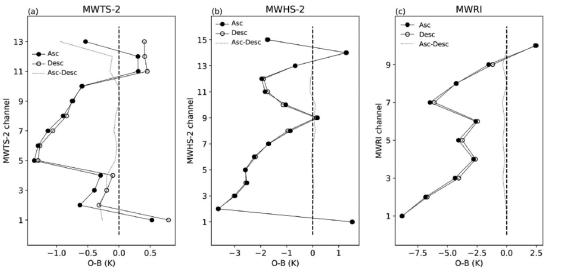
improved



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

UK Met Office

Impact of MWHS-1 & MWHS-2



Carminati et al., 2021

(a) Mean background departure (O-B) and standard deviation of O-B for FY-3D MWTS-2 (blue) and NOAA-20 ATMS (red) low-scattering oceanic scenes averaged between 15 June and 15 September 2019. Solid lines show the mean and dashed lines the standard deviation. (b) As in (a) but for FY-3D MWHS-2 (blue), FY-3C MWHS-2 (green), and NOAA-20 ATMS (red).

The combined impact of FY-3B MWHS-1 and FY-3C MWHS-2 was > 2% in January 2020.

(a) FY-3D MWTS-2 mean background departure from the ascending node (filled circles) and descending node (open circles) for low-scattering oceanic scenes averaged over August 2019. The gray line shows the difference, i.e., O-B ascending minus O-B descending. (b) As in (a) but for FY-3D MWHS-2. (c) As in (a) but for FY-3D MWRI.

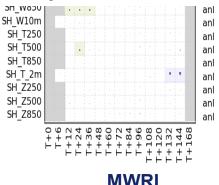
Assimilation of FY-3D instruments (2029)

Upward-pointing green triangles denote improvement and downward-pointing purple triangles denote degradation. Shading shows significant changes

RMSE difference against control

NH_PMSL				•		•	•			anl
NH_W250										anl
NH_W500	 •									anl
NH_W850	•									anl
VH_W10m										anl
NH_T250										anl
NH_T500										anl
NH_T850										anl
NH_T_2m	۸									anl
NH_Z250										anl
NH_Z500										anl
NH_Z850										anl
TR W250								•		anl
TR W500										anl
TR W850										anl
TR W10m										anl
TR T250										anl
TR ⁻ T500										anl
TR ⁻ T850										anl
									1.1.1.1	

0.1% reduction in RMSE when assimilating MWTS-2 and MWHS-2.

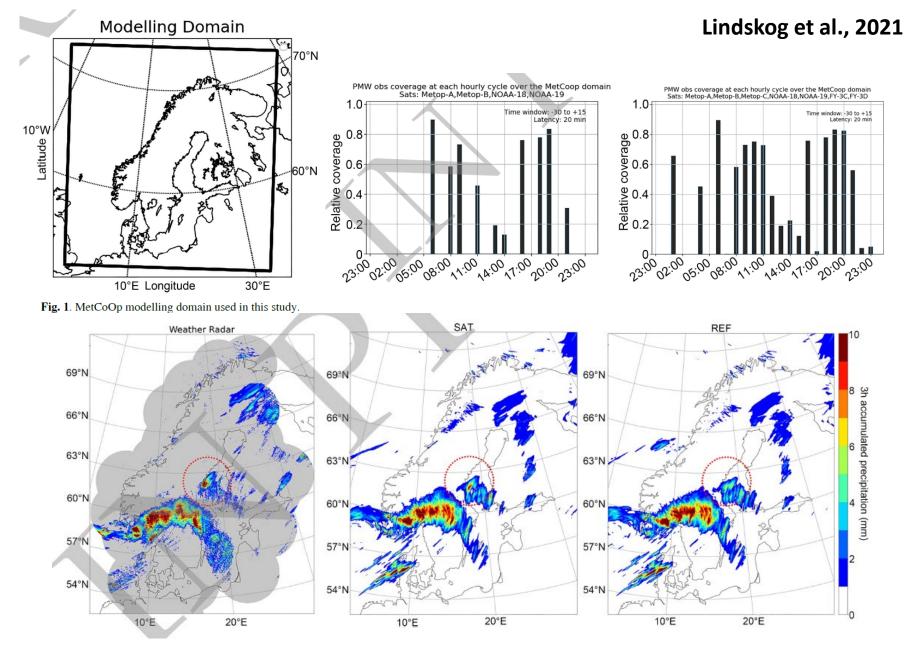

SH_W850 SH_W10m SH_T250 SH_T500 SH_T850 SH_T_2m SH_Z250 SH_Z500 SH_Z850		•	•													anl anl anl anl anl anl anl anl	
	0+1	T+6	T+12	T+24	T+36	T+48	T+60	T+72	T+84	T+96	T+108	T+120	T+132	T+144	T+168		

RMSE difference against control

NH_W250					1	•		÷	•	•	÷	an
NH_W500												 an
NH_W850				•						•		an
NH_W10m												an
NH_T250												an
NH_T500												 an
NH_T850												an
NH T 2m												 an
NH Z250												 an
NH_Z500			•									 an
NH Z850												 an
TR W250								٠	٠			 an
TR_W500												an
TR_W850												 an
TR W10m	•	·		•								 an
TR T250												an
TR ⁻ T500												 an
TR T850												 an

Neutral change in RMSE when assimilating FY-3D MWRI.

NH_W50		۰.	•	•									anl
NH W100													anl
NH ⁻ W250													anl
NH W500													anl
NH ⁻ W850													anl
NH W10m													 anl
ΝΗ Τ50													 anl
NH T 100													anl
NH ⁻ T250		Ē											anl
NH ⁻ T500													anl
NH ⁻ T850													anl
NH T 2m													 anl
NH Z250			i										anl
NH-Z500		÷	17									÷	 anl
NH_Z850												÷	anl
TR W50													anl
TR W100													 anl
TR_W250		÷										7	 anl
TR-W500		÷	÷		•								anl
TR_W850		÷											anl
TR W10m			÷								•	-	anl
TR T50													 anl
TR $\overline{T}100$	• • • • • •	1	÷.	1	1	1	•	•	÷	•	•		
TR_T250	••••			*		•		•			•		 anl
TR_T250													 anl
111_1000		14	1						•				 anl
TR T850													anl


RMSE difference against control

0.19% reduction in RMSE when assimilating GNOS data from FY-3D (data above 40km excluded).

SH W850 SH W10m SH T50 SH T100 SH T250 SH T500 SH T850 SH T 2m		anl anl anl anl anl anl anl
SH I 2m SH Z250 SH Z500 SH Z850		ani ani ani ani
	1684 1684 1684 1684 1684 1684 1684 1684	an

GNOS

Swedish Meteorological and Hydrological Institute

Coordination Group for Meteorological Satellites - CGMS

Thanks for your attention.

Coordination Group for Meteorological Satellites

