REPORT ON ALTERNATIVE DISSEMINATION METHODS FOR GOES-R

The USA is investigating the global distribution of high resolution imager and sounder data in the GOES-R era. Considering the expected high data rates for the proposed instruments, the USA studied three global distribution options consisting of dedicated lines, GOES-R rebroadcast and commercial communications satellites. This paper provided on overview of the each dissemination method and the projected annual cost

REPORT ON ALTERNATIVE DISSEMINATION METHODS FOR GOES-R

1. Introduction

Study focus - Sounder data distribution
Three global distribution options studied for the GOES R Era:

- Dedicated Land Lines
- GOES R
- Commercial Communications Satellites

Assumptions:

- High resolution imager data satellite distributed, due to near universal use.
- High resolution sounder data has fewer users.
- Studied data distribution options to these fewer users
- The Excel spreadsheet contains judged locations of US and foreign government meteorology centers that will want full resolution sounder data (radiance or brightness temp) from the GOES R series
- Major US \& foreign government meteorology centers, some universities, private commercial sectors (value added weather services, etc).
- Sounder had either of two (2) data Rates - 16 Mbps or 64 Mbps.

Cost Data in terms of annual costs out to year developed from:

- Aerospace Corp's August 2001 GOES R concept design report (developing 13 design configurations), with variations driven mostly by the broadcast data rate and communications system. Annual costs derived from this report and projected out to yr 2007.
- Mitretek Corp, specialized communications industry expertise, developed dedicated land line costs consulting with long distance carriers projecting out to year 2007.
- Dyncorp Corp's 2001 OSD commercial satellite study. Intelsat VIII and IX used to reflect industry costs projected out to yr 2007

US and foreign User identification \& Framework for NESDIS Data Distribution Policy developed by OSD

Shows the broadcast area for GOES GRB, \& locations ABI \& ABS (HES) can be received
Curves Developed by the Aerospace Corp.
2. Annual Costs - Commercial Communications Satellites Global Sounder GRB Distribution (16 Mbps)

2.1 ANNUAL COSTS FOR COMMERCIAL COMMUNICATIONS SATELLITE GLOBAL BROADCASTS

Based on Intelast VIII Satellite Costs

(Cost Data from Dyncorp Study performed for NESDIS OSD-ASPD - May 2001 Report)

Mbps	Annual Broadcast Cost from 1 Satellite (\$K/yr)
30	5503.4
16	2935.2
9	1650
5	916.8
2.1	384

- $\$ 2.94$ million/yr in 2002 dollars is the annual cost to broadcast 16 Mbps over commercial communication satellites, using Intelsat VIII costs from Dyncorp's Study as a reference.
- To Replicate the Coverage of Two GOES Satellites (GOES E \& W), the Grand Total Annual Cost to Broadcast 16 Mbps over Two (e.g. Intelsat VIII \& IX) Commercial satellites is $\$ 5.88$ million/yr in 02 dollars.
- Annual Total Annual Cost for Two Commercial Communications Satellites to Replicate GOES E \& W Coverage @ 16Mbps is $\$ 7$ million/yr in 2007 dollars.

Note: Commercial communications satellites may be unavailable for global broadcasts above 43 Mbps

3. Annual Costs - GOES R Sounder Global GRB Distribution (16 \& 64 Mbps)

3.1 ANNUAL COSTS FOR GOES R SOUNDER GLOBAL BROADCAST at 16 Mbps

The plotted curve \& its equation define the acquisition Costs for four (4) GOES R satellites vs a global GRB processed data re-broadcast (GRB) data rate. As the global GRB increases, the impact on the communication system and GOES R acquisition cost increases.

GOES R cost vs GRB data rate derived from data from Aerospace Corp's Aug. 2001computer design study of GOES R, with 13 designs (i.e. configurations) developed for NESDIS.
---- Aerospace report No. ATR-2002(2331)-1
Below cost vs data rate curve developed by Aerospace Communications \& Architecture departments using the architecture study data.

GOES-R GRB Data Rate vs. Cost for 4 Spacecraft (configurations 2, 3, 9)

Cost to Add 16 Mbps of ABS/HES to GOES R, for GRB global broadcast is determined:

- Assume GOES R globally broadcasts 8 Mbps ABI full \& 4.2Mbps GRB lite to all GRB users, not only to National MET Centers, for a total 12.2 Mbps ABI broadcast.
- Cost to add an additional ABS/HES global GRB @16 Mbps to ABI can then be found.
- GOES R 4 satellite acquisition cost with only an ABI GRB of 12.2 Mbps (8 full \& 4.2 lite) is 856.2million in 02 dollars.
- The GOES R increased acquisition cost from adding ABS/HES 16Mbps GRB to the ABI's at 12.2 Mbps is 923.4 million dollars in 02 dollars.
- Cost to add 16 Mbps of $\mathrm{ABS} / \mathrm{HES}$ global GRB is 67.5 million for 4 satellites 02 dollars (i.e. 923.6-856.2million).
- Cost for one (1) satellite to add 16 Mbps ABS distribution is 16.9 million in 02 dollars.
- Assume 7 yr lifetime,cost/yr is 2.4 million per yr per GOES R satellite in 02 dollars.
- Cost for 1 GOES R satellite to add 16 Mbps of ABS GRB distribution is 2.84 million annually (07 dollars).
- Grand total cost to add 16 Mbps GRB distribution to both GOES R era E \& W (2 satellites) is 5.7 million annually (07 dollars).

3.2
 ANNUAL COSTS FOR GOES R SOUNDER GLOBAL BROADCAST at 64 Mbps

The plotted curve \& its equation define the acquisition Costs for four (4) GOES R satellites vs a global GRB processed data re-broadcast (GRB) data rate. As the global GRB increases, the impact on the communication system and GOES R acquisition cost increases.

GOES R cost vs GRB data rate derived from data from Aerospace Corp's Aug. 2001computer design study of GOES R, with 13 designs (i.e. configurations) developed for NESDIS.
---- Aerospace report No. ATR-2002(2331)-1
Below cost vs data rate curve developed by Aerospace Communications \& Architecture departments using the architecture study data.

Cost to Add 64 Mbps of ABS/HES to GOES R, for GRB global broadcast is determined:

- Assume GOES R globally broadcasts 8 Mbps ABI full \& 4.2 Mbps GRB lite to all GRB users, not only to National MET Centers, for total of 12.2 Mbps ABI 12.2 broadcast.
- Cost to add an additional ABS/HES global GRB @64 Mbps to ABI can then be found.
- GOES R 4 satellite acquisition cost with only an ABI GRB of 12.2 Mbps (8 full \& 4.2 lite) is 856.2million in 02 dollars.
- The GOES R increased acquisition cost from adding ABS/HES 64 Mbps GRB to the ABl's at 12.2 Mbps is 1013.7.4million dollars in 02 dollars.
- Cost to add 64Mbps of ABS/HES global GRB is 157.5 million for 4 satellites 02 dollars (i.e. 1013.7-856.2million).
- Cost for one (1) satellite to add 16 Mbps ABS distribution is 39.4 million in 02 dollars.
- Assume 7 yr lifetime,cost/yr is 2.4 million per yr per GOES R satellite in 02 dollars.
- Cost for 1 GOES R satellite to add 64 Mbps of ABS GRB distribution is 6.64 million annually (07 dollars).
- Grand total cost to add 16 Mbps GRB distribution to both GOES R era E \& W (2 satellites) is 13.3 million annually (07 dollars).

4. Annual Costs - Land Lines for SounderData Distribution (16 \& 64 Mbps)
4.1 GOES R "SOUNDER" LANDLINE DATA DISTRIBUTION COSTS @ (16 Mbps in FY'07 Dollars)

NOAA Baseline (Distribution varying between 5 to 10 sites)						
			CASE A	CASE B	CASE C	CASE D
US FEDERAL AGENCIES			Annual Cost	Annual Cost	Annual Cost	Annual Cost
NOAA						
	GOESE	Goes w				
NCEP (MD):	x	x	\$146,448	\$146,448	\$146,448	\$146,448
CIMSS (WI):	x	x	\$265,680	\$265,680	\$265,680	\$265,680
CIRA (CO):	\times	x	\$518,400	\$518,400	\$518,400	\$518,400
OAR (CO):	x	x	\$518,400	\$518,400	\$518,400	\$518,400
GSFC Backup Site (MD):	x	x	\$146,448	\$146,448	\$146,448	\$146,448
Kansas City - Aviation (KS):	x	x	\$0	\$349,920	\$349,920	\$349,920
Norman OK - Severe Center (OK):	x	x	\$0	\$388,800	\$388,800	\$388,800
Miami - TPC (FL):	x	x	\$0	\$324,000	\$324,000	\$324,000
Hawaii Pacific Region (HI):		\times	\$0	\$0	\$972,000	\$972,000
Anchorage (Alaska)		x	\$0	\$0	\$1,711,080	\$1,711,080
Subtotal Landline Annual Cost (NOAA):			\$1,595,376	\$2,658,096	\$5,341,176	\$5,341,176
Suitland Infrastructure Annual Cost associated with government sites (~ 30 sites):			\$61,071	\$62,143	\$67,500	\$99,643
Techincal Staff Annual Cost to support Infrastrucutre:			\$200,000	\$200,000	\$200,000	\$200,000
Suitland Infrastructure Annual Cost associated with non-government sites (~ 40 sites):			\$96,429	\$96,429	\$96,429	\$96,429
Total Annual Landline Cost (NOAA):			\$1,952,876	\$3,016,668	\$5,705,105	\$5,737,248
DoD						
AF Offut Omaha (NE):	\times	x	\$479,520	\$479,520	\$479,520	\$479,520
Navy Monterey (CA):	x	x	\$583,200	\$583,200	\$583,200	\$583,200
Navy Bay St Louis (MS):	x	x	\$382,320	\$382,320	\$382,320	\$382,320
Total Annual Landline Cost (DOD):			\$1,445,040	\$1,445,040	\$1,445,040	\$1,445,040
FAA						
Harris Corp (Contractor to FAA) - (FL):	x	x	\$324,000	\$324,000	\$324,000	\$324,000
NASA						
GSFC Greenbelt(MD):	x	x	\$146,448	\$146,448	\$146,448	\$146,448
MSFC Huntsville(AL):	x	x	\$298,080	\$298,080	\$298,080	\$298,080
Langley, Hampton (VA):	x	x	\$168,480	\$168,480	\$168,480	\$168,480
Total Annual Landline Cost (NASA)			\$613,008	\$613,008	\$613,008	\$613,008
TOTAL ANNUAL LANDLINE COST (US FEDERAL GOVT):			\$4,334,924	\$5,398,716	\$8,087,153	\$8,119,296

NON - FEDERAL AGENCIES							
CENTRAL AMERICA Costa Rica: Mexico:	x \times \times	\times	$\begin{aligned} & \$ 1,200,000 \\ & \$ 2,400,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 2,400,000 \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 2,400,000 \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 4,800,000 \end{aligned}$	$\begin{aligned} & (1 \text { site }) \\ & (2 \text { sites }) \end{aligned}$
			\$3,600,000	\$3,600,000	\$3,600,000	\$6,000,000	
CARIBBEAN Barbados: Bermuda:	x \times		$\begin{aligned} & \$ 1,200,000 \\ & \$ 1,200,000 \end{aligned}$	$\$ 1,200,000$ $\$ 1,200,000$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 1,200,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 2,400,000 \\ & \$ 1,200,000 \\ & \hline \end{aligned}$	(2 sites) (1 site)
Total Annula Landline Cost (Carribean):			\$2,400,000	\$2,400,000	\$2,400,000	\$3,600,000	
SOUTH AMERICA							
Argentina:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$2,400,000	(2 sites)
Brazil:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$8,400,000	(7 sites)
Chile:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$3,600,000	(3 sites)
Columbia:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Ecuador:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Peru:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Venezuela:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Total Annual Landline Cost (South America):			\$8,400,000	\$8,400,000	\$8,400,000	\$19,200,000	
total annual landline cost (Southern Hemisphere)			\$14,400,000	\$14,400,000	\$14,400,000	\$28,800,000	
CANADA Montreal - Quebec:	x	x	\$960,000	\$960,000	\$960,000	\$17,280,000	(15 sites)
EUROPE England - Reading:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
France - Lanion:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Spain - Madrid:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
TOTAL ANNUAL LANDLINE COST (Europe):			\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000	
GRAND TOTAL ANNUAL COST (ALL GOVERNMENT AGENCIES)			\$23,294,924	\$24,358,716	\$27,047,153	\$57,799,296	

UNIVERSITIES

COMMERCIAL METEOROLOGY INDUSTRY

PRIVATE INDUSTRY
Note about Case D: It delivers 16 Mbps ABS/HES GRB Data to each (GVAR) site existing in each Southern Hemisphere nation (e.g. Brazil has 7 GVAR sites, and so in this case the sounder data is sent to each of the 7 sites)

Dedicated Landline Costs were prepared for NESDIS OSD Office as part of a study completed by Mitretek Systems
(Pricing based on data from FTS contract and other carriers)

4.2 GOES R "SOUNDER" LANDLINE DATA DISTRIBUTION COSTS @ (16 Mbps in FY’07 Dollars)

NON - FEDERAL AGENCIES

CENTRAL AMERICA Costa Rica: Mexico:	x \times ¢	x	$\begin{aligned} & \$ 1,200,000 \\ & \$ 2,400,000 \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 2,400,000 \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 2,400,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 4,800,000 \\ & \hline \end{aligned}$	$\begin{gathered} (1 \text { site }) \\ (2 \text { sites }) \end{gathered}$
Total Annual Landline (Central America):			\$3,600,000	\$3,600,000	\$3,600,000	\$6,000,000	
CARIBBEAN Barbados: Bermuda:	x		$\begin{aligned} & \$ 1,200,000 \\ & \$ 1,200,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 1,200,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 1,200,000 \\ & \$ 1,200,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 2,400,000 \\ & \$ 1,200,000 \\ & \hline \end{aligned}$	(2 sites) (1 site)
Total Annual Landline Cost (Carribean):			\$2,400,000	\$2,400,000	\$2,400,000	\$3,600,000	
SOUTH AMERICA Argentina:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$2,400,000	(2 sites)
Brazil:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$8,400,000	(7 sites)
Chile:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$3,600,000	(3 sites)
Columbia:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Ecuador:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Peru:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Venezuela:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Total Annual Landline (South America):			\$8,400,000	\$8,400,000	\$8,400,000	\$19,200,000	
TOTAL ANNUAL LANDLINE COST (Southern Hemisphere)			\$14,400,000	\$14,400,000	\$14,400,000	\$28,800,000	
CANADA Montreal - Quebec:	x	x	\$960,000	\$960,000	\$960,000	\$17,280,000	(15 sites)
EUROPE England - Reading:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
France - Lanion:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
Spain - Madrid:	x		\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	(1 site)
TOTAL ANNUAL LANDLINE COST (Europe):			\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000	
GRAND TOTAL ANNUAL COST (ALL GOVERNMENT AGENCIES)			\$25,551,164	\$26,614,956	\$29,303,393	\$60,055,536	

UNIVERSITIES

COMMERCIAL METEOROLOGY INDUSTRY

PRIVATE INDUSTRY

4.3 GOES R "SOUNDER" LANDLINE DATA DISTRIBUTION COSTS @ (64 Mbps in FY’07 Dollars)

NOAA Baseline (Distribution varying between 5 to 10 sites)						
			CASE A	CASE B	CASE C	CASE D
US FEDERAL AGENCIES			Annual Cost	Annual Cost	Annual Cost	Annual Cost
NOAA						
NCEP (MD):	x	x	\$542,400	\$542,400	\$542,400	\$542,400
CIMSS (WI):	x	x	\$984,000	\$984,000	\$984,000	\$984,000
CIRA (CO):	x	x	\$1,920,000	\$1,920,000	\$1,920,000	\$1,920,000
OAR (CO):	x	x	\$1,920,000	\$1,920,000	\$1,920,000	\$1,920,000
GSFC Backup Site (MD):	x	x	\$542,400	\$542,400	\$542,400	\$542,400
Kansas City - Aviation (KS):	x	x	\$0	\$1,224,000	\$1,224,000	\$1,224,000
Norman OK - Severe Center (OK):	x	x	\$0	\$1,440,000	\$1,440,000	\$1,440,000
Miami - TPC (FL):	x	x	\$0	\$1,200,000	\$1,200,000	\$1,200,000
Hawaii Pacific Region (H):		x	\$0	\$0	\$3,600,000	\$3,600,000
Anchorage (Alaska)		x	\$0	\$0	\$6,337,344	\$6,337,344
Subtotal Landline Annual Cost (NOAA):			\$5,908,800	\$9,772,800	\$19,710,144	\$19,710,144
Suitland Infrastructure Annual Costs associated with government sites (1-224 sites):			\$500,000	\$500,000	\$500,000	\$500,000
Technical Staff Annual Cost to support Infrastructure:			\$200,000	\$200,000	\$200,000	\$200,000
Suitland Infrastructure Annual Cost associated with non-government sites:			\$0	\$0	\$0	\$0
Total Annual Landline Cost (NOAA):			\$6,608,800	\$10,472,800	\$20,410,144	\$20,410,144
DoD						
AF Offut Omaha (NE):	x	x	\$1,776,000	\$1,776,000	\$1,776,000	\$1,776,000
Navy Monterey (CA):	\times	x	\$2,160,000	\$2,160,000	\$2,160,000	\$2,160,000
Navy Bay St Louis (MS):	x	x	\$1,416,000	\$1,416,000	\$1,416,000	\$1,416,000
Total Annual Landline Cost (DOD):			\$5,352,000	\$5,352,000	\$5,352,000	\$5,352,000
FAA Harris Corp (Contractor to FAA) - (FL):	x	x	\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000
NASA GSFC Greenbelt(MD):	x	x	\$542,400	\$542,400	\$542,400	\$542,400
MSFC Huntsville(AL):	x	x	\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000
Langley, Hampton (VA):	x	x	\$542,400	\$542,400	\$542,400	\$542,400
Total Annual Landline Cost (NASA):			\$2,284,800	\$2,284,800	\$2,284,800	\$2,284,800
TOTAL ANNUAL LANDLINE COST (FEDERAL GOVT):			\$15,445,600	\$19,309,600	\$29,246,944	\$29,246,944

NON - FEDERAL AGENCIES

CENTRAL AMERICA Costa Rica: Mexico:	x	x	\$4,200,000 $\$ 8,400,000$	\$4,200,000 $\$ 8,400,000$	\$4,200,000 $\$ 8,400,000$	$\begin{array}{r} \$ 4,200,000 \\ \$ 16,800,000 \\ \hline \end{array}$	(1 1 site) (2 sites)
Total Annual Landline Cost (Central America):			\$12,600,000	\$12,600,000	\$12,600,000	\$21,000,000	
CARIBBEAN							
Barbados:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$8,400,000	(2 sites)
Bermuda:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
Total Annual Landline Cost (Carribean):			\$8,400,000	\$8,400,000	\$8,400,000	\$12,600,000	
SOUTH AMERICA							
Argentina:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$8,400,000	(2 sites)
Brazil:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$29,400,000	(7 sites)
Chile:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$12,600,000	(3 sites)
Columbia:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
Ecuador:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
Peru:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
Venezuela:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
Total Annual Landline Cost (South America):			\$29,400,000	\$29,400,000	\$29,400,000	\$67,200,000	
TOTAL ANNUAL LANDLINE COST (Southern Hemisphere)			\$50,400,000	\$50,400,000	\$50,400,000	\$100,800,000	
CANADA Montreal - Quebec:	x	x	\$2,400,000	\$2,400,000	\$2,400,000	\$43,200,000	(15 sites)
EUROPE England - Reading:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
France - Lanion:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
Spain - Madrid:	x		\$4,200,000	\$4,200,000	\$4,200,000	\$4,200,000	(1 site)
TOTAL ANNUAL LANDLINE COST (Europe):			\$12,600,000	\$12,600,000	\$12,600,000	\$12,600,000	
iRAND TOTAL ANNUAL COST (ALL GOVERNMENT AGENCIES)			\$80,845,600	\$84,709,600	\$94,646,944	\$185,846,944	

UNIVERSITIES

COMMERCIAL METEOROLOGY INDUSTRY

PRIVATE INDUSTRY

Note about Case D: It delivers 64 Mbps ABS/HES GRB Data to each (GVAR) site existing in each Southern Hemisphere nation (e.g. Brazil has 7 GVAR sites, and so in this case the sounder data is sent to each of the 7sites)
Dedicated Landline Costs were prepared for NESDIS OSD Office as part of a study completed by Mitretek Systems (Pricing based on data from FTS contract and other carriers)

4.4 GOES R "SOUNDER" LANDLINE DATA DISTRIBUTION COSTS @ (64 Mbps in FY’07 Dollars)

isting in each sourtern hemisphere naition (e.g. Brazil has 7 GVAA
sent to each of the 7 sites

Dedicated Landline Costs were prepared for NESDIS OSD Office as part of a study completed by Mitretek Systems (Pricing based on data from FTS contract and other carriers)
5. Data Distribution To U.S. And Foreign Government Meteorology Centers In The GOES R Era

Guiding Principles
A set of principles guides the current effort:

1. Dissemination of GOES data should be done in a manner that achieves the best balance between the goals of maximizing the and usefulness of the information and minimizing the cost to
the U.S. government and the American public.
2. GOES information should be made available in a manner that facilitates worldwide cooperation and promotes the exchange of meteorological and related information.
3. GOES data should be made available in a manner that provides at least the same level of service experienced by present GOES users.
4. GOES data are critical to meteorological operations and the protection of life and property.
5. Continue some form of wide area distribution within the footprint of GOES satellites. Figure 1 shows the current broadcast area from the 2 GOES satellites located at 75 degrees West and 135 degrees West. Reception is thought to be generally possible out to areas where the elevation angle is between 0 to 5 degrees.
