

Prepared by JMA Discussed in Plenary

JMA REPORT ON THE STATUS OF CURRENT AND FUTURE SATELLITE SYSTEMS

The Japan Meteorological Agency (JMA) operates two geostationary meteorological satellites, Himawari-8 and -9, equipped with Advanced Himawari Imager (AHI). Himawari-8 has been stably operational since July 2015, and the operation is planned to be taken over by Himawari-9 around December 2022. Prior to the switchover, Himawari-9 data will be provided parallel with Himawari-8 data for user readiness (non-operational purposes).

In FY 2018, JMA has started considering the next geostationary satellite program. JMA will pursue a seamless geostationary satellite system, keeping in mind the CGMS baseline and Vision for WIGOS in 2040.

Action/Recommendation proposed: none

JMA report on the status of current and future satellite systems

1 INTRODUCTION

This paper reports on the status of JMA's current and future satellite systems.

2 CURRENT SATELLITE SYSTEMS

					1105		
Sector	Satellite	Location	Launch date	Data Access Payload and status			
			DD/MM/YYYY				
East	Himawari-8	140.7°E	07/10/2014	HimawariCast	16-channel AHI, DCS, SEDA;		
Asia				HimawariCloud	operational		
and	Himawari-9	140.7°E	02/11/2016	HimawariCast	16-channel AHI, DCS, SEDA;		
Western				HimawariCloud	in-orbit standby		
Pacific					-		

Table 2.1 JMA's current GEO satellites

2.1 Status of current GEO satellite systems

The Japan Meteorological Agency (JMA) operates two geostationary meteorological satellites, Himawari-8 and -9, equipped with Advanced Himawari Imager (AHI) units. JMA has established a satellite observation system with redundancy based on twin satellite operation, which is expected to contribute to disaster risk reduction in Asia and the western Pacific until 2029. Himawari-8 will chiefly be used for observation during the early part of this period, with Himawari-9 in a back-up role. Their operation will be switched around December 2022 to place Himawari-9 in the main observation role with Himawari-8 as back-up. The switch will be almost seamless, with no data format or data dissemination system changes other than filenames for Himawari Standard Data (HSD) and NetCDF file. Prior to the switchover, Himawari-9 data will be provided parallel with Himawari-8 data for user readiness (non-operational purposes).

	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Himawari-8	Launch Operational									In-orbit standby											
	M	anu	factu	iring						-											
Himawari-9					_	_	Laun	ch	1	In	-orb	it sta	andb	Y		0	Opera	ation	al		

Figure 1: Himawari-8/-9 timeline.

2.1.1.1 Himawari-8

The status of Himawari-8 is normal, with no significant anomalies since CGMS-49. The following webpage provides information on irregular events, processing events and data outages of the satellite:

Himawari-8 Event Log, MSC/JMA https://www.data.jma.go.jp/mscweb/en/oper/event H8.html

JMA performed an instance of Himawari-8 maintenance on 15 February 2022. This was for the Advanced Himawari Imager, and encompassed scanner calibration. The satellite performed no observation during this time.

2.1.1.2 Himawari-9

The status of Himawari-9 is normal, with no significant anomalies since CGMS-49. The following webpage provides information of irregular events, processing events and data outages of the satellite:

Himawari-9 Event Log, MSC/JMA https://www.data.jma.go.jp/mscweb/en/oper/event H9.html

In the event of a critical Himawari-8 malfunction, Himawari-9 will begin back-up observation.

2.1.2 Impact on spacecraft due to space weather

Space weather related spacecraft anomalies (Items in **bold** are required)

During the reporting period, no anomalies were confirmed in relation to space weather-related events.

Table 2.2 Source: Recommendations for Contents of Anomaly Database for Correlation with Space Weather Phenomena, P. O'Brien, J.E. Mazur, T.Guild, November 2011, AEROSPACE Report No.TOR-2011(3903)-5.

1. Date	2. Fully	3. Velocity	4. Eclipse	5. Vector to	6. Velocity	7. Initial	8.	9. Anomaly	10.	11. Notes (e.g. unusual
and	specified	or orbital	state of the	Sun in	vector of	guess at	Estimated	category	Vehicle	operational states or recent
Universal	location of	elements at	vehicle	spacecraft	spacecraft	type of	confidence	(e.g.,	identity	changes to operations (recent
Time of	the	time of the	(full,	coordinates	in	anomaly	of that	affected		commands, attitude scheme, etc.)
the	anomaly	anomaly	penumbra,		spacecraft	(See	guess	system or		
anomaly	(spacecraft		partial,		coordinates	taxonomy	_	kind of		
	location)		none)			below)		disruption)		

Taxonomy of Satellite Anomalies Caused by In Situ Charged Particle Environment (to be used for column 7):

1. Electrostatic discharge (charging)	2.2 Heavy ions
1.1 Surface charging	2.2.1 Galactic Cosmic Rays
1.1.1 Plasma sheet (subauroral)	2.2.2 Solar energetic particles
1.1.2 Auroral	2.2.3 Geomagnetically trapped heavy ions
1.2 Internal charging	3. Total Dose
1.2.1 Subsurface charging (e.g., beneath blanket)	3.1 Long-term dose accumulation (multiple causes combined)
1.2.2 Deep charging (e.g., inside a box)	3.2 Short-term (days or less) dose accumulation
2. Single-Event Effects	3.2.1 Solar protons
2.1 Protons	3.2.2 Geomagnetically trapped protons
2.1.1 Solar proton event	3.2.3 Geomagnetically trapped electrons
2.1.2 Geomagnetically trapped protons	

2.1.3 Ground segment matters

The availability of the Himawari-8 and -9 ground systems was normal during the reporting period.

2.1.4 Data transmission

JMA mainly distributes Himawari-8/9 data in two ways. One is the HimawariCast, by which primary sets of imagery are disseminated as operational meteorological services via a commercial communication satellite. The other is the HimawariCloud, by which full sets of imagery are delivered to National Meteorological and Hydrological Services (NMHSs) via a private Internet cloud service. JMA upgraded both systems in FY 2019. See CGMS-50-JMA-WP-07 for more information on Himawari-8 data provision.

2.1.5 **Projects, services**

2.1.5.1 Data Collection System

Himawari-8 currently supports the Data Collection Service. Monthly reports on Himawari-8's IDCS is available at Monthly Operation Report, MSC/JMA https://www.data.jma.go.jp/mscweb/en/oper/opr report.html.

See the CGMS-50-JMA-WP-02 for more information on Himawari-DCS.

2.1.5.2 Space Environment Data Acquisition

Himawari-8 and -9 have instruments to sense proton and electron flux for satellite housekeeping known as SEDA (Space Environment Data Acquisition). SEDA text data acquired from the satellites are provided to the National Institute of Information and Communications Technology (NICT) to support near-real-time space environment monitoring and forecasting. For more information, see the NICT Space Weather Information Center Web page at https://aer-nc-web.nict.go.jp/himawari-seda/.

2.1.5.3 HimawariRequest Service

In January 2018, JMA launched a new international service "HimawariRequest", in collaboration with the Australian Bureau of Meteorology. The service allows NMHS users in Himawari-8/9 coverage area to request Target Area observation covering a 1,000 km x 1,000 km area every 2.5 minutes.

As of 24 May 2022, JMA had taken 22 registrations from NMHSs in RA II and RA V, and opened the service to the seventeen whose preparations for request submission were complete. There have been 162 international requests since the commencement of the service, among which 144 have been accepted. Table 2.3 shows numbers of international requests and accepted requests received so far.

	International requests	Accepted requests								
2018	10	8								
2019	47	36								
2020	39	38								
2021	45	41								
2022	21	21								
(as of 24 May)										

Table 2.3: HimawariRequest status

JMA provides information on past, current and planned observation schedules for target-area observation, including that conducted under the HimawariRequest service, at:

- Past:

https://www.data.jma.go.jp/mscweb/data/himawari/obs_info_tg_en.html,

 Current: <u>https://www.data.jma.go.jp/mscweb/data/himawari/sat_tga.php</u>,
Planned:

https://www.data.jma.go.jp/sat info/data/Request/RequestStatus.html.

See CGMS-50-JMA-WP-08 for more information on status of JMA HimawariRequest service.

3 HIMAWARI-8/9 FOLLOW-ON PROGRAM

In FY 2018, JMA has started considering the Himawari-8/9 follow-on program. JMA will pursue a seamless geostationary Earth orbit satellite system, keeping in mind the CGMS baseline and the Vision for WIGOS in 2040.

The Implementation Plan of the Basic Plan on Space Policy, which is decided/revised by the Strategic Headquarters for National Space Policy, Cabinet Office, Government of Japan, states that "By FY2023 Japan will start manufacturing the Geostationary Meteorological Satellites that will be the successors to Himawari-8 and -9, aiming to put them into operation in around FY2029". The progress of the Observing System Simulation Experiment (OSSE) for a hyperspectral IR sounder (HSS) on the follow-on program is reported in CGMS-50-JMA-WP-06.

4 CONCLUSIONS

Himawari-8 and -9 are operating normally with no significant anomalies, and JMA now operates the related HimawariRequest service to help mitigate disaster conditions in the Asia-Pacific region. A seamless switch from Himawari-8 to -9 is planned for around December 2022, with parallel provision of Himawari-9 data prior to the switch for user readiness. The Agency is also considering the follow-on satellites that will take over from Himawari-8 and -9.