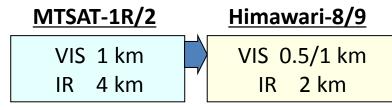
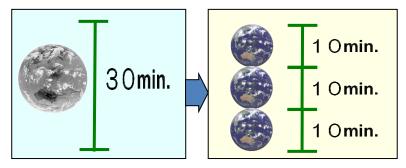


Presented to CGMS-43 Plenary session, agenda item F.1.7 Japan Meteorological Agency

CGMS-43 JMA-WP-09

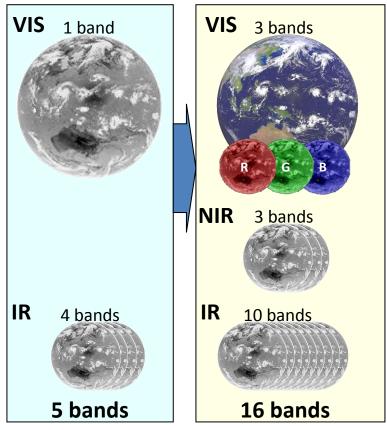


Coordination Group for Meteorological Satellites


Introduction

- Himawari-8 was successfully launched on 7 October 2014.
- The satellite will start operation in July 2015.
- Himawari-8 features the new Advanced Himawari Imager (AHI).

Improved spatial resolution


More frequent observation

More flexible regional observation

Special observation Target area obs. every 2.5 minutes

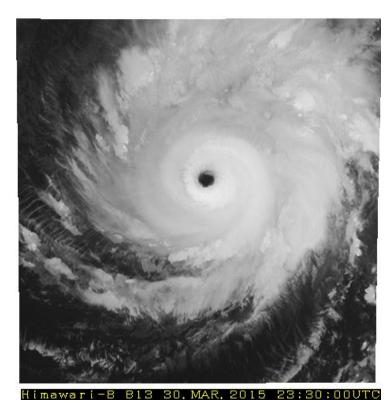
More spectral bands

Coordination Group for Meteorological Satellites - CGMS 3 Characteristics of AHI 16 Spectral bands

as of MTSAT-1R/2

Similar to ABI					
	Band	Wavelength [µm]	Quantization [bit]	Spatial Resolution (km)	for GOES-R
	1	0.46	11	1km	RGB band Composited Composited Composited 0.51 μm (Band 2) Instead of ABI's 1.38 μm
SIV	2	0.51	11	1km 🖌	
	3	0.64	11	0.5km	
	4	0.86	11	1km	
	5	1.6	11	2km	
	6	2.3	11	2Km	
IR4	7	3.9	14	2Km	
R1 IR2	8	6.2	11	2Km	- Water vapor
	9	7.0	11	2Km	
	10	7.3	12	2Km	
	11	8.6	12	2Km	SO ₂
	12	9.6	12	2Km	0 ₃
	13	10.4	12	2Km	Atmospheric
	14	11.2	12	2Km	Windows
	15	12.3	12	2Km	
Japan M	16	13.3	11	2Km	CO ₂

First Shot of Himawari-8


02:40 UTC on 18 December 2014

L1 products (Improvement of temporal resolution)

23:30UTC 30 to 09:00UTC 31 March 2015 MTSAT-2 (IR1) Every 30 minutes

23:30UTC 30 to 09:00UTC 31 March 2015 Himawari-8 (Band #13) Every 2.5 minutes

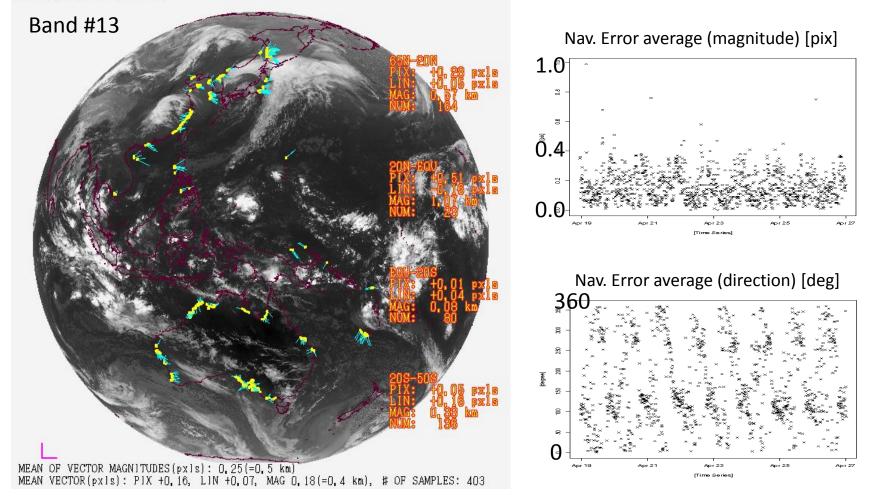
Himawari-8 Image Navigation & Calibration Status

Coordination Group for Meteorological Satellites CGMS

Navigation

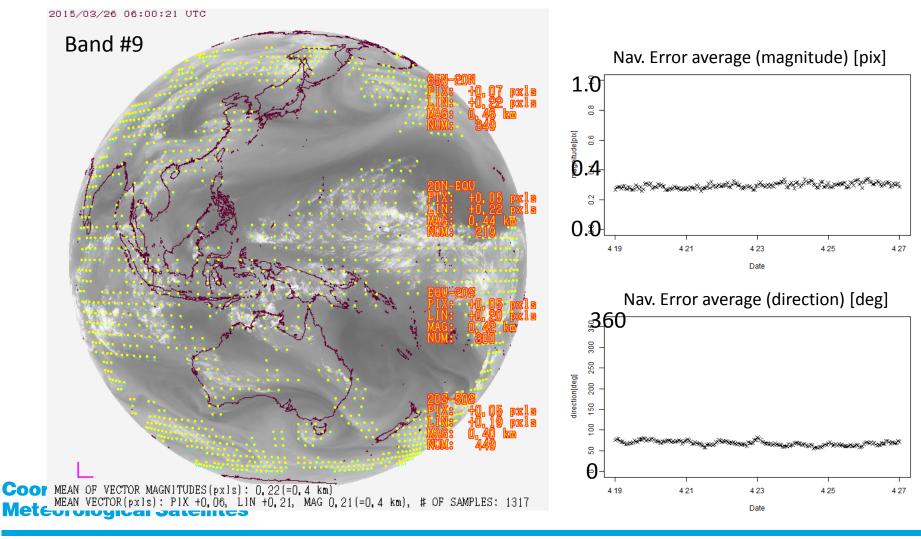
Method

- Satellite attitude is determined from information by star tracker, gyro and so force.
- The attitude is corrected based on landmark analysis.
- Coregistration process is applied for each band.
- Status
 - Navigation error is less than 0.5 pixels in 2.0 km-bands
 - Co-registration error is within 0.3 pixels


7

Coordination Group for Meteorological Satellites

Image navigation accuracy

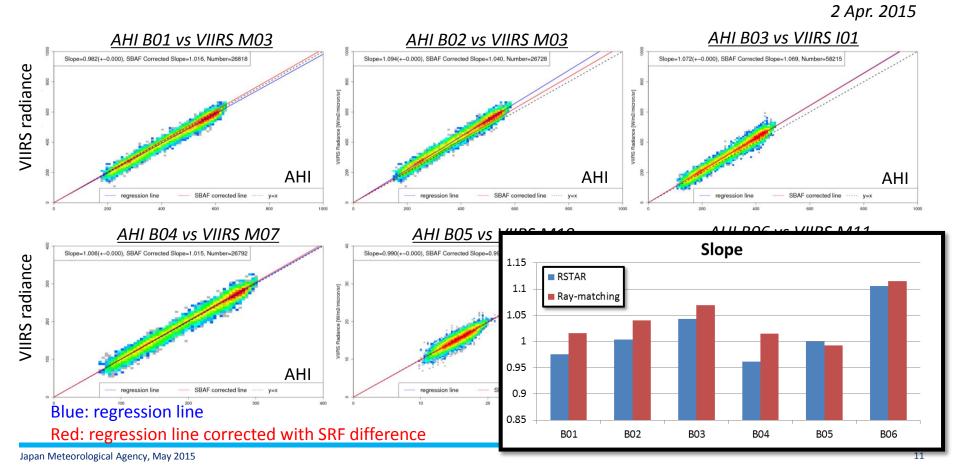

less than 0.5 pixels in 2.0km-bands.

2015/04/15 00:00:21 UTC

Co-registration error (comparing with B13)

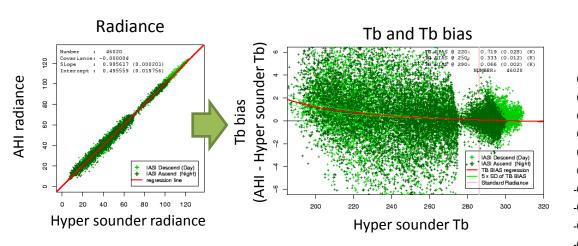
 \blacktriangleright less than ~0.3 pixels in 2.0km-bands.

Calibration

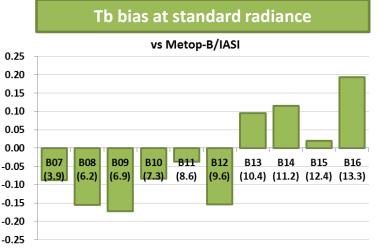

- Onboard calibration
 - Visible and near infrared bands
 - Deep space observation is performed every swath. The result is applied to determine calibration coefficient (offset).
 - (At present) calibration slope and quadratic term: ground test values.
 - Infrared bands
 - Calibration coefficients are obtained based on blackbody observation performed every 10 minutes and deep space observation performed every swath.

Status

- Visible and near infrared bands
 - Bands #3 and #6 have 5 to 10 % discrepancy between observed and expected radiance.
 - Update of calibration coefficients is planned.
- Infrared bands
 - Brightness temperature bias is within 0.2 K at standard radiance in all bands.
- Summary of the ground test and IOT are shown in appendix of the JMA-WP-09.


Validation of VIS/NIR calibration (Ray-matching approach)

- Reference is Suomi-NPP/VIIRS measurements.
- The slope represents discrepancy between observed and expected radiance.
- Bands #3 and #6 show 5 to 10 % discrepancy.
- The result is roughly consistent with the results by RTM based approach.


Validation of IR calibration (Hyper sounder based approach)

- Observation bias is computed from comparison with "pseudo" radiance based on hyper sounder data and SRF of AHI.
- Brightness temperature bias is within 0.2 K at standard radiance in all bands.
- Another validation approach based on a direct comparison with MTSAT-2 represents consistent result.

* Standard radiance was computed by RTTOV11.2 in a 1976 US Standard Atmosphere at nadir, at night, in clear sky, over the sea.

Coordination Group for Meteorological Satellites

Enhancement in Himawari-8 Level-2 Day-1 Products

Coordination Group for Meteorological Satellites CGMS

Level-2 DAY-1 Products from Himawari-8/9 AHI

Increased Observation Spectral Bands VIS: 1 --> 3 NIR/IR: 4 --> 13

with Higher Resolution

Spatial:

1km --> 0.5km for a VIS band 4km --> 2 km for IR bands Temporal:

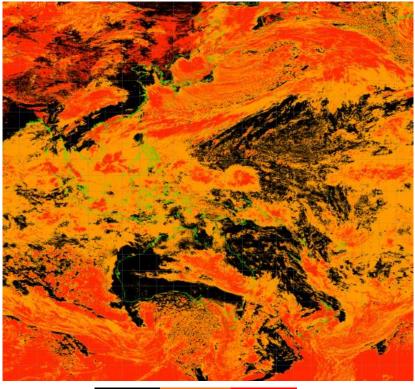
1 hr --> 10 min for "full disk" 2.5min for limited areas

..... will Enhance Baseline DAY-1 Products, especially

- Cloud Products (incl. Rapidly Developed Convective Clouds)
- Atmospheric Motion Vectors (AMVs)/Clear Sky Radiances (CSRs)
- Aerosol (incl. Asian Dust) / Volcanic Ash

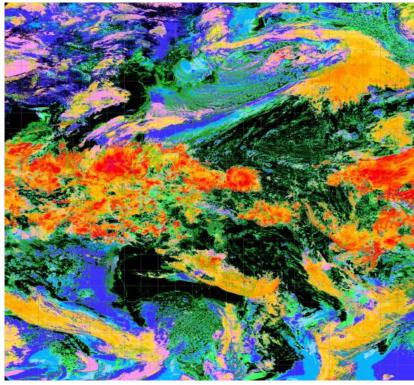
Coordination Group for Meteorological Satellites - CGMS Cloud Products from Himawari-8/9 AHI

- Extracted Parameters: Cloud Mask, Type, Phase, and Top Height
- Algorithm is based on NWC-SAF^{*1} and NOAA/NESDIS^{*2}


(*1) Meteo-France 2012: Algorithm Theoretical Basis Document for
"Cloud Products" (CMa-PGE01v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2)
<u>http://www.nwcsaf.org/HD/MainNS.jsp</u>
(*2) Andrew Heidinger, 2011: ABI Cloud Mask, NOAA NESDIS CENTER for
SATELLITE APPLICATIONS and RESEARCH ATBD
http://www.goes-r.gov/products/baseline.html

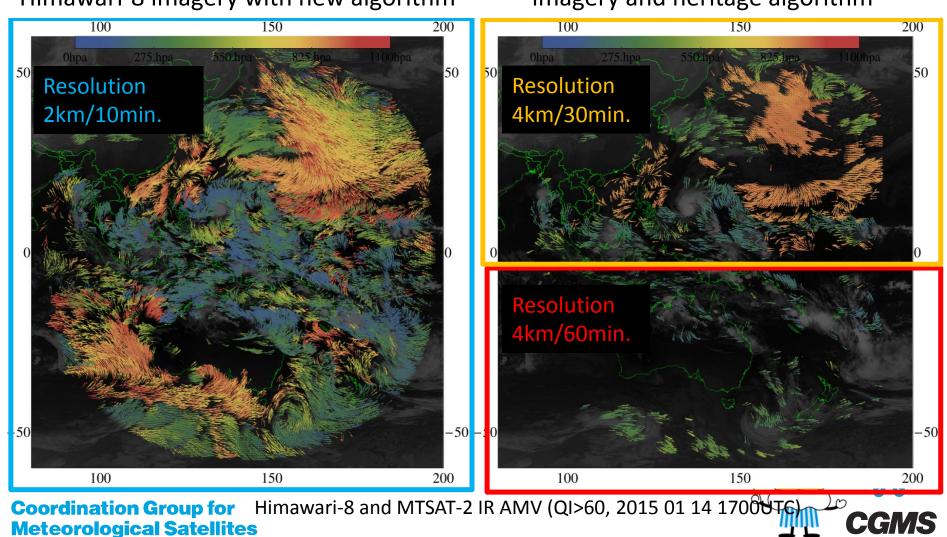
Cloud Mask Phase Type Cloud Top Height [m] Mixed 18,000 Cloud Phase Fractional Clear Liquid Ocean Semi-transparent 9,000 Clear Land Ice Opaque **Coordination Group for Meteorological Satellites**

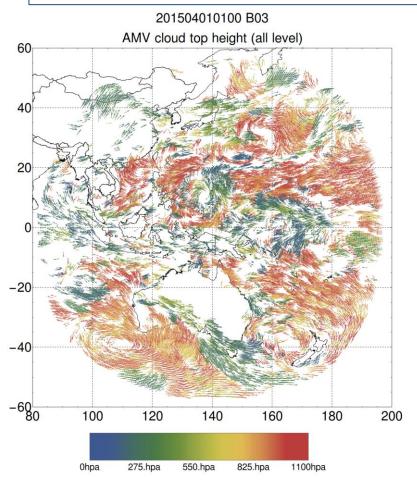
Objective Cloud Analysis Information (OCAI)

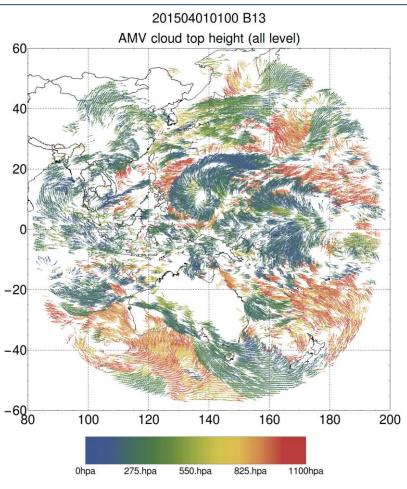

- Basic cloud product with latitude-longitude grid in 0.05 degree.
 - cloud mask, cloud type and cloud top height
- To be produced hourly when Himawari-8 becomes operational.
- Ready to provide to NMHSs, e.g. Indonesia and Myanmar, in response to requests.

Cloud Mask

Clear Mixed Cloud

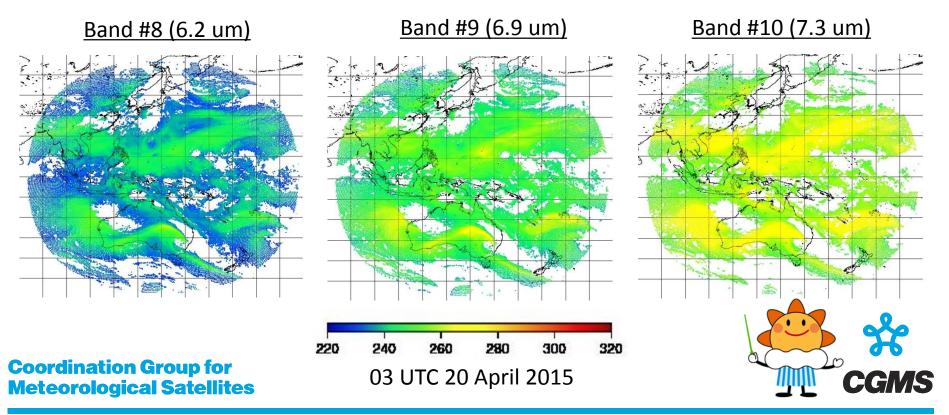

Cloud Top Height


Improvement in Atmospheric Motion Vectors (AMVs) Retrieval

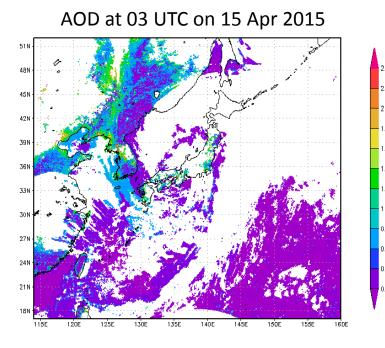

Himawari-8 AMVs derived from Himawari-8 imagery with new algorithm MTSAT-2 AMVs derived from MTSAT-2 imagery and heritage algorithm

Atmospheric Motion Vectors (AMVs)

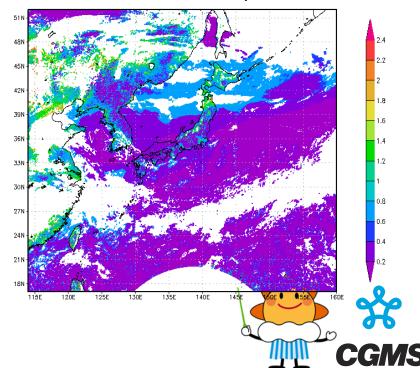
- JMA/MSC has developed a new algorithm for Himawari-8 AMVs based on an optimal estimation method for full exploitation of satellite data (Shimoji 2014).
- Validation results will be informed to NWP users (IWW mailing list)



/S


Clear Sky Radiances (CSRs)

- Area averaged clear sky radiance and brightness temperature.
- Specifications:
 - Spatial resolution (size of area for averaging): 16 x 16 pixel (IR) (32 x 32 km @SSP)
 - Full disk, Hourly produced
 - All IR bands (3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 um)



Aerosol Optical Depth (for Asian dust monitoring)

- Aerosol optical depth (AOD) and Ångström exponent (proxy for particle size) to be estimated. Ångström exponent only over the ocean.
- The aerosol type is assumed to be Asian dust, and the algorithm is not optimized for other types (e.g., haze).
- > JMA will use Himawari-8 AOD to monitor Asian dust.
- Ready to provide to NMHSs in response to requests.

Coordination Group for Meteorological Satellites

AOD at 03 UTC on 27 Apr 2015

Summary

- Navigation
 - Image navigation accuracy: less than 0.5 pixels
 - Co-registration error: less than 0.3 pixels
- Calibration
 - Some of visible and near-infrared bands exhibit discrepancies of several percent between measured and expected radiance. The calibration coefficients are still tuning.
 - There is no significant bias and diurnal variation in IR bands.
- The AHI's observation function is improved over that of the imager on board MTSAT-2 in terms of spatial resolution, observation frequency, the number of bands and other specifications.
- Himawari-8 AMV and CSR products will be distributed via GTS when Himawari-8 becomes operational.
- The AHI's capability for such multi-band observation is beneficial for environmental monitoring and operational weather services.

Coordination Group for Meteorological Satellites

Thank you !!

Coordination Group for Meteorological Satellites

