

Prepared by JAXA Agenda Item: D.2 Discussed in Plenary

JAXA REPORT ON THE STATUS OF CURRENT AND FUTURE SATELLITE SYSTEMS

GPM/DPR was successfully launched from Tanegashima Space Center on Feb. 27, and Initial calibration and check out of the DPR is ongoing.

TRMM/PR is still working well. 15th anniversary symposium was held in Tokyo in November, 2012.

JAXA currently operates GOSAT, Ibuki and GCOM-W1, Shizuku.

The GOSAT data products are distributed through the GOSAT User Interface Gateway (GUIG), a website for GOSAT data distribution.

The AMSR2 products are available at the GCOM-W1 Data Providing Service website.

The developments of ALOS-2, EarthCARE/CPR and GCOM-C are under way.

ALOS-2 will be launched in May 2014. While EarthCARE and GCOM-C will be launched in JFY2016.

GOSAT-2 project was officially initiated in this April as a GOSAT, Ibuki follow-on. The target launch date is in JFY2017.

The specifications of current and planned data products are described in this Working Paper.

JAXA Report on the status of current and future satellite systems

1. Status of Current R&D Satellite Systems

Satellites	Space Agency	Equator Crossing Time + Altitude	Launch date	Access to data or products (Links)	Instruments	Status, applications and other information
TRMM	NASA/ JAXA	non-sun- synchronous (35° incl) 402 km	28/11/1997	NASA PMM data access page JAXA G-Portal	- PR (Precipitation Radar) - TMI (TRMM MW Imager) - CERES - VIRS - LIS (Lightning Imaging Sensor)	Measures tropical rainfall/precipitation and radiation energy Precipitation Radar (PR) provided by JAXA Satellite bus and other instruments provided by NASA CERES no longer functional
GOSAT (IBUKI)	JAXA & Japan's Ministry of Environment	13:00 (D) 666km	23/01/2009		TANSO-FTS, TANSO-CAI	Greenhouse Gases Observing Satellite monitoring the distribution of the density of carbon dioxide
GCOM-W1 (SHIZUKU)	JAXA	13:30 (A) 700 km	18/05/2012	DPSS	AMSR-2	Global water and energy circulation. Joining the A-train.
GPM Core Observatory	NASA/JAXA	non-sun- synchronous (65° incl) 407 km	2/27/2014	NASA PMM data access page JAXA G-Portal	- DPR (Dual- frequency Precipitation Radar) - GMI (GPM MW Imager)	Measures global rainfall/precipitation DPR provided by JAXA Satellite bus and GMI provided by NASA

1.1 GOSAT (Ibuki)

The Greenhouse Gases Observing Satellite "IBUKI" (GOSAT) is the world's first spacecraft specialized to measure the concentrations of carbon dioxide and methane, the two major greenhouse gases, from space. The spacecraft was launched successfully on January 23, 2009, and has been operating properly since then.

GOSAT observes infrared light reflected and emitted from the earth's surface and the atmosphere. Column abundances of CO₂ and CH₄ are retrieved from the observed spectra. The mixing ratio of the target gas species is expressed as column-averaged dry air mole fraction above an observed unit surface area of 10.5 km.

GOSAT flies at an altitude of approximately 666 km and completes one revolution in about 100 minutes. The satellite returns to the same point in space in three days. The observation instrument on-board the satellite is the Thermal and Near-infrared Sensor for carbon Observation (TANSO). TANSO is composed of two subunits: the Fourier Transform Spectrometer (FTS) and the Cloud and Aerosol Imager (CAI).

Specifications of FTS

	Band 1	Band 2	Band 3	Band 4
Spectral coverage (µm)	0.758-0.775	1.56-1.72	1.92-2.08	5.56-14.3
Spectral resolution (cm ⁻¹)	0.2	0.2	0.2	0.2
Polarized light observation	Performed	Performed	Performed	Not Performed
Targeted gases	O ₂	$CO_2 \cdot CH_4$	$CO_2 \cdot H_2O$	$CO_2 \cdot CH_4$
Angle of instantaneous field of view	15.8 mrad.(corresponds to 10.5 km when projected on the earth's surface)			en projected
Time necessary for a single scanning (sec.)	$4.0\ , 2.0\ ,$ or 1.1 (depending on the scanning mode being used)			

Specifications of CAI

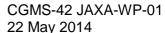
	Band 1	Band 2	Band 3	Band 4
Spectral coverage (µm)	0.370-0.390 (0.380)	0.664-0.684 (0.674)	0.860-0.880 (0.870)	1.56-1.65 (1.60)
Targeted substances	Cloud and aerosol			
Swath (km)	1000	1000	1000	750
Spatial resolution at nadir (km)	0.5	0.5	0.5	1.5

All types of the GOSAT data products are provided for general users. Data users can search and order the Level 1 data (FTS Level 1B, CAI Level 1B, and CAI Level 1B+ data) and the higher level data products (FTS Level 2, CAI Level 2, FTS Level 3, CAI

Level 3, Level 4A, and Level 4B data products). The Level 1 data and the Level 2 data products whose uncertainties have been evaluated in the instrument calibration and data validation activities are open to the general users. Carbon dioxide flux estimates based on the observational data by GOSAT are released to general users as the Level 4 data products.

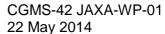
The GOSAT data products are distributed through the GOSAT User Interface Gateway (GUIG*), a website for GOSAT data distribution. Prior user registration is required for accessing the data products and can be done on "user authentication" page reached from "product & service" page on GUIG.

GUIG*:https://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/GuigPage/open.do;jsessionid=0F6497855D3B130F97D71E3D2BEC9323?lang=en

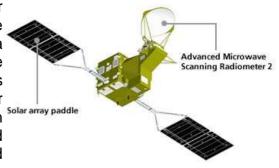

Data Format Product Sensor/ Product Designation **Product Provision Unit** Level Band Radiance spectral data obtained by performing Fourier FTS scene FTS FTS L1B data transform on interferogram data L₁B Radiance data (band-to-band and geometric correc-HDF5 CAL CAI L1B data tions applied / data mapping not performed) CAI frame Radiance data (band-to-band and geometric correc-L1B+ CAL CAI L1B+ data tions applied / data mapping performed) CO2 column abundance data retrieved from SWIR radi-L2 CO₂ column amount (SWIR) ance spectral data FTS SWIR CH, column abundance data retrieved from SWIR radi-L2 CH₄ column amount (SWIR) ance spectral data FTS scan 12 CO2 vertical profile data retrieved from TIR radiance L2 CO, profile (TIR) spectral data FTS TIR CH4 vertical profile data retrieved from TIR radiance L2 CH₄ profile (TIR) spectral data CAL CAI frame L2 cloud flag Cloud coverage data L3 global CO₂ distribution CO2 column-averaged mixing ratio data projected on a FTS (SWIR) global map SWIR HDF5 L3 global CH₄ distribution CH_a column-averaged mixing ratio data projected on a (SWIR) global map month (global) CO, concentrations at each vertical level projected on L3 global CO₂ distribution (TIR) a global map FTS TIR CH, concentrations at each vertical level projected on a 13 L3 global CH4 distribution (TIR) global map Global radiance distribution data L3 global radiance distribution (3 days' worth, including data for cloudy segments) 3 days (global) Clear-sky reflectance data (composed only of clear-sky L3 global reflectance distribution segments selected from a month's worth of data) CAL Vegetation index global distribution data 3 days - Rectangle L3 NDVI (with cloudy meshes flagged) (30°×60° (lat.× lon.)) L4A L4A global CO₂ flux Text/NetCDF CO₂ flux per each of 64 global regions (monthly average) year (global) Three-dimentional global distribution of CO₂ concentration month (global) 2.5°×2.5°grid (lat.× lon.) L4B L4B global CO₂ distribution

GOSAT Data Products

In addition to the GOSAT data products, global distributions of total and tropospheric ozone can be retrieved from FTS TIR band [Ohyama et al., 2012]. Global and seasonal distributions of terrestrial chlorophyll fluorescence are measured from space by using FTS O₂ band [Joiner et al., 2011, Frankenberg et al., 2011, Guanter et al., 2012].


References

http://www.gosat.nies.go.jp/index_e.html http://www.jaxa.jp/projects/sat/gosat/index_e.html http://www.eorc.jaxa.jp/GOSAT/index_j.html


- Ohyama, H., S. Kawakami, K. Shiomi, and K. Miyagawa, Retrievals of total and tropospheric ozone from GOSAT thermal infrared spectral radiances, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, issue 5, pp. 1770-1784, 2012.
- Joiner, J., Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp, and E. M. Middleton, First observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, vol. 8, pp. 637-651, doi: 10.5194/bg-8-637-2011, 2011.
- Frankenberg, C., J. Fisher, J. Worden, G. Badgley, S. Saatchi, J.-E. Lee, G. Toon, A. Butz, M. Jung, A. Kuze, and T. Yokota, New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity, Geophysical Research Letters, vol. 38, L17706, doi: 10.1029/2011GL048738, 2011.
- Guanter, L., C. Frankenberg, A. Dudhia, P. E. Lewis, J. Gomez-Dans, A. Kuze, H. Suto, and R. G. Grainger, Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote Sensing of Environment, vol. 121, pp. 236–251, 2012.

1.2 GCOM-W1 (Shizuku)

The Global Change Observation Mission 1st - Water "SHIZUKU" (GCOM-W1) mission aims to establish the global and long-term observation system to collect data which is needed to understand mechanisms of climate and water cycle variations, and demonstrate its utilization. Advanced Microwave Scanning Radiometer 2 (AMSR2) on-board the GCOM-W1 satellite has taken over Aqua/AMSR-E observations of water vapor, cloud liquid water, precipitation, SST, sea surface wind speed sea ice concentration, snow depth, and soil moisture.

GCOM-W1 was launched from the Tanegashima Space Center at 1:39 am on May 18, 2012 (Japan Standard Time) and entered into the A-train orbit on June 29. The A-Train satellite constellation cross the equator within a few minutes of one another at around 1:30 pm local time, and GCOM-W1 is flying in front of the Aqua satellite, thus it takes the most front position in the A-Train until another NASA satellite, OCO-2 joins the constellation. GCOM-W1 has started the initial observations since July 3, after increasing the antenna rotation of the on-board AMSR2 to 40 rpm, then has moved to the regular observation operation on August 10 as scheduled after completion of the initial functional verification

AMSR2 on-board the GCOM-W1 satellite is a remote sensing instrument for measuring weak microwave emission from the surface and the atmosphere of the Earth. From about 700 km above the Earth, AMSR2 has provided us highly accurate measurements of the intensity of microwave emission and scattering since July, 2012. The antenna of AMSR2 rotates once per 1.5 seconds and obtains data over a 1450 km swath. This conical scan mechanism enables AMSR2 to acquire a set of daytime and night-time data with more than 99% coverage of the Earth every 2 days.

The AMSR2 products are available at the GCOM-W1 Data Providing Service website (https://gcom-w1.jaxa.jp/auth.html).

Frequency Channels and Resolutions of AMSR2

(Orbit altitude of 700 km and main-reflector size of 2.0m are assumed)

Center frequency [GHz]	Band width [MHz]	Polarization	Beam width [deg.] (Ground resolution [km])	Sampling interval [km]
6.925 / 7.3	350		1.8 (35 x 62)	
10.65	100		1.2 (24 x 42)	
18.7	200	V and H	0.65 (14 x 22)	10
23.8	400	V and H	0.75 (15 x 26)	
36.5	1000		0.35 (7 x 12)	
89.0	3000		0.15 (3 x 5)	5

GCOM-W1 Standard Products

Product Rang		Comments		
Brightness temperatures				
Brightness temperatures	2.7-340K	Global, 6 frequency with dual polarizations		
Geophysical parameters				
Integrated water vapour	0 - 70kg/m ²	Over global ocean [*] , columnar integrated value		
Integrated cloud liquid water	0 - 1.0kg/m ²	Over global ocean*, columnar integrated value		
Precipitation	0 - 20mm/h	Global (except over ice and snow), surface rain rate		
Sea surface temperature	-2 - 35°C	Global ocean*		
Sea surface wind speed	0 - 30m/s	Global ocean*		
Sea ice concentration	0 - 100%	High latitude ocean areas		
Snow depth	0 - 100cm	Land surface (except dense forest regions)		
Soil moisture	0 - 40%	Land surface (except ice sheet and dense forest regions)		

Except sea ice and precipitating areas

References

http://www.jaxa.jp/projects/sat/gcom/index_e.html http://suzaku.eorc.jaxa.jp/GCOM/index.html

1.3 GPM and DPR

The Global Precipitation Mission (GPM) is a satellite program to measure the global distribution of precipitation accurately in a sufficient frequency so that the information provided by this program can drastically improve weather predictions, climate modelling, and understanding of water cycles. The accurate measurement of precipitation will be achieved by the Dual-frequency Precipitation Radar

(DPR) installed on the GPM core satellite. The DPR on the GPM core satellite is developed by JAXA and National Institute of Information and Communications Technology (NICT).

GPM Core Observatory was successfully launched from Tanegashima Space Center on Feb. 27. The GPM Core Observatory is carrying DPR (KuPR and KaPR) and GPM Microwave Imager (GMI) and its orbit is non-sun-synchronous with 407km altitude and 65 degrees inclination. Initial calibration and check out of DPR is ongoing. Both NASA/GSFC and JAXA has developed ground system to process GPM standard products. At JAXA's GPM Mission Operation System in Tsukuba.

Major characteristics of DPR

Major characteristics of Dr K				
Name	KuPR	KaPR		
radar type	active phased array radar			
Antenna	slotted waveg	juide antenna		
Frequency	Ku-band	Ka-band		
	13.60 GHz	35.55 GHz		
peak transmit power	> 1000 W	> 140 W		
Swath	245 km	125 km		
horizontal	5 k	cm .		
resolution				
range resolution	250 m	250m/500m		
observation altitude	surface	~ 19 km		
observation rain	0.5 mm/h ~	0.2 mm/h ~		
rate				
Size	2.4 m x 2.4 m x 0.6 m	1.44 m x 1.07 m x 0.7		
		m		
	< 470 kg	< 336 kg		

JAXA GPM Data Products

There are three kinds of products that are Standard product, Research product and Near-real time product. Research products are the ones in research phases; however, those have possibilities to be Standard products. Several candidates for research product are considered at JAXA GPM project, and will be defined later. Near-real time products will be generated using estimated orbital information for

prompt data release and distributed to users who need GPM data as soon as possible for their operational purposes.

Following tables are list of JAXA GPM products. Other than JAXA GPM products, some of the GPM standard products processed at NASA will be distributed from JAXA. GPM standard products will be authorized between the U.S. and Japan Joint Precipitation Measuring Mission (PMM) Science Team.

JAXA is responsible for the GPM/DPR algorithm development for engineering values (Level 1) and physical products (e.g. precipitation estimation) (Level 2 and 3) and the quality control of the products as the sensor provider. Furthermore, JAXA is planning to generate the DPR/GMI combined algorithms, which will be based on DPR maximizing the use of DPR information, and Global Precipitation Map product, which will merge multiple satellite information and mapped data with high temporal resolution, considering data needs in some operational areas such as weather forecasts and flood warning. DPR and DPR/GMI combined Level 2 and 3 algorithms are jointly developed by Japan and US joint algorithm team.

To meet the GPM objectives, retrieval algorithms will require global applicability, robustness, and long-term stability. Algorithms that can be extended and applied for similar instruments (e.g., PR, and microwave radiometers on board the other satellites) and historical data records are preferable for integrated retrieval. Computationally efficient, fast-processing algorithms are important for the operational applications of the products. Level 2 of the Dual-frequency Precipitation product and the DPR/GMI combined product and Level 3 Global Precipitation Map product, which are denoted in light grey in the table below, are also required to process in near real time. Each near-real-time algorithm will be developed based on the standard algorithm. All near-real-time products have to be produced and distributed within 60 minutes after acquisition of observation data.

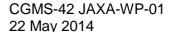
JAXA GPM near-real-time products

Level	Algorithm	Product	Major Physical Parameters	Unit	Coverage
1R	Depends on each sensor	Microwave radiometer product	Brightness temperature	arbitrarily	Depends on each sensor
2R	DPR algorithm (Japan-US joint)	Dual-frequency precipitation product	Rain rate profile, drop size distribution, precipitation status (rain/snow), attenuation profile	arbitrarily	245km
	DPR/GMI combined algorithm (Japan-US joint)	DPR/GMI combined product	rain rate profile, surface rain rate	Orbit	125km
3R	Global precipitation map algorithm	Global precipitation map product	Mean rainfall, observation number, rain pixel number	Hourly	Global

JAXA GPM Standard Products

Level	Algorithm	Product	Major physical parameter	Unit	Coverage
1	KuPR algorithm	KuPR product	Received power profile	Orbit	245km (swath)
•	KaPR algorithm	KaPR product	Received power profile	Orbit	125km (swath)
		KuPR product	Radar reflectivity profile, normalized radar surface cross section (σ^0), rain type, bright-band height, attenuation corrected radar reflectivity profile, rain rate profile	Orbit	245km (swath)
2	DPR algorithm (Japan-US joint)	KaPR product	Radar reflectivity profile, normalized radar surface cross section (σ ⁰), rain type, bright-band height, attenuation corrected radar reflectivity profile, rain rate profile	Orbit	125km (swath)
		Dual-frequency precipitation product	Rain rate profile, drop size distribution, precipitation status (rain/snow), attenuation profile	Orbit	245km (swath)
	DPR/GMI combined algorithm (Japan- US joint)	DPR/GMI combined product		Orbit	245km (swath)
	DPR latent heating algorithm	DPR latent heating product	Latent heating profile, rain type	Orbit	245km (swath)

JAXA GPM Standard Products (Cont'd)


Level	Algorithm	Product	Major physical parameter	Unit	Coverage
			Mean surface rainfall, time information, Ascending/Descending flag	Daily	Global
DPR algorithm	DPR algorithm (Japan-US joint)	Dual-frequency precipitation	Mean rainfall (dual), observation number, rain pixel number, mean bright-band height, storm height, rain/snow determination, time information	Daily (Asc/Dsc)	Global
3	(Japan-US Joint)	product	Mean rainfall (single, dual), observation number, rain pixel number, mean bright-band height, storm height, mean attenuation corrected radar reflectivity profile, mean DSD parameters, histogram	Monthly	Global
	DPR/GMI combined algorithm (Japan- US joint)	DPR/GMI combined product	Mean rainfall, observation number, rain pixel number,	Monthly	Global
	DPR latent	DPR latent	Latent heating profile,	Orbit	Global
	heating algorithm	heating product	number of latent heating pixel	Monthly	Global
	Global	Global	Mean rainfall, observation	Hourly	Global
	precipitation map algorithm	precipitation map product	number, rain pixel number	Monthly	Global

NOTE: Other than these products listed up in this table, some of the GPM standard products processed at NASA will be distributed from JAXA. GPM standard products will be authorized between the U.S. and Japan Joint PMM Science Team.

CEOS Precipitation Constellation

CEOS Precipitation Constellation (PC) is proposed as one of first four virtual constellations, and JAXA and NASA is co-leading CEOS PC activities with other participating agencies.

CEOS PC holds annual meeting (International workshop) to exchange information of the individual satellite projects and specifications of instruments, and to establish annual or biennial Work Plan to implement the broad goals and specific phase objectives outlined in the PC Implementation Plan. The fourth CEOS PC International Workshop was held in 10 November 2011 in Denver, U.S., which was originally scheduled in April 2011 in Brazil, but postponed because of the March Earthquake in Japan. At the forth workshop, CEOS PC 2011-2012 Work Plan and 2009-2011 Accomplishment were developed. In addition, the relationship of proposed CEOS PC Portal to the proposed CEOS Water Portal were discussed.

Results of the workshops were uploaded to the CEOS PC web site (http://ceospc.gsfc.nasa.gov) operated by NASA. The fifth CEOS PC workshop is planning to be held in late 2014 in Japan.

As a follow up to discussion at the 4th workshop, the subsequent 2012 CEOS-GEO Actions Workshop, and the CEOS SIT-27 Meeting, JAXA and NASA, co-chairs of the CEOS PC, are proceeding with the PC Data Portal Development. White Paper describing the concept and the implementation approach was distributed to PC members in September 2012. Update of the White Paper in order to raise issues regarding concern about decrease of future passive microwave imager instruments was completed in March 2014. The PC Data Portal with interface to the CEOS Water Portal is a contribution to the GEO Water Strategy and 2012 CEOS-GEO Action WA-01-C1_3. PC Portal (first phase) initial operational capability is available in 2013, and the PC Portal second phase is under preparation.

References

http://www.jaxa.jp/projects/sat/gpm/index e.html

http://www.eorc.jaxa.jp/GPM/index e.htm

http://pmm.gsfc.nasa.gov/

http://ceospc.gsfc.nasa.gov/

2. Status of Future R&D Satellite Systems

Satellites	Space Agency	Equator Crossing Time + Altitude	Planned Launch Date	Planned access to data or products (Links)	Planned Instruments	Status, applications and other information
ALOS-2	JAXA	12:00 628km	Japan Fiscal Year 2013			PALSAR-2
EarthCARE	ESA- JAXA	10:30 (D) 450 km	11/2016			ATLID, BBR, CPR, MSI, Cloud, radiation and aerosol interaction processes
GCOM-C	JAXA	10:30 (D) 798 km	Japan Fiscal Year 2016			Carbon cycle and radiation budget (Atmosphere, Ocean, Land and Cryosphere)
GOSAT-2	JAXA	13:00 666km(TBD)	Japan Fiscal Year 2017			Next generation of GHG observing satellite

2.1 ALOS-2

The Advanced Land Observing Satellite-2 (ALOS-2) is a follow-on mission from the ALOS "Daichi". ALOS had contributed to cartography, regional observation, disaster monitoring, and resource surveys, until May 2011. ALOS-2 will succeed to this mission with enhanced capabilities. Specifically, JAXA is conducting research

and development activities to improve wide and high-resolution observation technologies developed for ALOS in order to further fulfil social needs.

These social needs include: 1) Disaster monitoring of damage areas, both in considerable detail, and when these areas may be large 2) Continuous updating of data archives related to national land and infrastructure information 3) Effective monitoring of cultivated areas 4) Global monitoring of tropical rain forests to identify carbon sinks.

The state-of-the-art L-band Synthetic Aperture Radar (PALSAR-2) aboard ALOS-2, which is an active microwave radar using the 1.2GHz frequency range, will, in responding to society's needs, have enhanced performance compared to ALOS/PALSAR. PALSAR-2 is capable of observing day and night, and in all weather conditions.

ALOS-2 will be launched on May 24, 2014 by the H-IIA Launch Vehicle.

Major characteristics of ALOS-2

Observation mode	Spotlight: 1m~3m resolution, 25km swath Stripmap: 3m~10m resolution, 50km~70km swath ScanSAR: 100m resolution, 350km/490km swath
Orbit	Type: Sun-synchronous sub-recurrent orbit Altitude: 628km Local sun time at Descending Node: 12:00 +/-15min Revisit time: 14 days
Design life	5 years (target: 7 years)
Mass	Approx. 2 ton

References

http://www.jaxa.jp/projects/sat/alos2/index_e.html

2.2 EarthCARE and CPR

The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) is a joint European-Japanese mission addressing the need for a better understanding of the interactions between cloud and aerosol, and their radiative processes that play a role in climate regulation. Japan (JAXA and NiCT) will provide Cloud Profiling Radar (CPR) to the spacecraft.

EarthCARE Spacecraft © ESA

CPR is a 94 GHz Doppler Radar which has several characteristics. First point is the high sensitivity. This requirement is divided into large antenna size requirement, low noise figure of receiver requirement and high power of transmitter requirement. Second point is the Doppler capability. To materialize this function with satisfactory accuracy, large diameter of antenna with precise surface figure and high pulse repetition frequency (PRF) are required. To keep accuracy especially at boundary layer region, several other fine characteristics, such as side lobe characteristics of antenna, cross polarization characteristics and so on, are also required for CPR design.

CPR Major Specifications (Draft)

Radar type	94 GHz Doppler Radar
Center frequency	94.05 GHz
Pulse width	3.3 micro second (equivalent to 500m vertical resolution)
Beam width	0.095 deg
Polarization	Circular; Tx: LHCP, Rx: RHCP
Transmit power	> 1.5 kW (Klystron spec.)
Height range	-1 ~ 20 km
Resolution	500 m (100 m sample); Vertical, 500m integration; Horizontal
Sensitivity*	-35 ~ +23 dBZ
Radiometric accuracy*	< 2.7 dB
Doppler range*	-10 ~ +10 m/s
Doppler accuracy*	< 1 m/s
Pulse repetition frequency	Variable; 6100~7500 Hz
Pointing accuracy	< 0.015 degree

^{*;} at 10 km integration and 387 km orbit height

JAXA will produce not only CPR products but also other products from the each sensor and the synergetic use of other sensors.

EarthCARE JAXA Products

Standard Products

Sensor	Process. Level	Product	Priimary Parameter	Grid Spacing Horizontal Vertical			Spatial Resolution		Standard Accuracy	Target Accuracy
			Received Echo Power	Horizontai	Vertical	Horizontai	vertical	< 4.7dB	< 2.7dB	_
		CPR one-sensor	Radar Reflective Factor		0.1km	0.765km*3	0.5km	< 4.7dB	< 2.7dB	< 2.7dB
CPR	L1b	Received Echo Power	Surface Radar Cross Section	0.5km		(Cross-track)		-	-	
		Products and Doppler Product	Doppler Velocity/Covariance of Pulsepair/Spectrum Width		0.1km	0.840km*3 (Along-track)	0.5km	-	≦ 1.3m/s (Doppl. Vel)	< 0.2m/s (Doppl. Vel)
CPR	L2a	CPR one-sensor Echo Product	Integrated Radar Reflective Factor/Integrated Doppler Velocity/Gas Correction Factor	1km	0.1km	1km/ <i>10km</i>	0.5km	-	≦ 1.3m/s (Int. Doppl. Vel.)	< 0.2m/s (Int. Doppl. Vel.)
			Cloud Mask					±30%	±10%	±5%
		CPR one-sensor Cloud	Cloud Particle Type		0.1km	1km/ <i>10km</i>	0.5km	±100%	±50%	±20%
CPR	L2a	Products	Reff./LWC/IWC	1km				-	±100% (LWC)	±50% (LWC)
			Optical Thickness				-	-	±100%	±50%
		ATLID one-sensor Cloud Aerosol Poducts	Feature Mask	L1b min. unit/1km		L1b min. unit/1km/ <i>10km</i>		±100%	±40%	±10%
			Target Mask	- 1km	0.1km	1km/ <i>10km</i>	0.1km	±100%	±40%	±10%
ATLID	L2a		Aerosol Extinction Coeff./Backscat.		U. IKM	10km		±60%/±90%,	±40%/±70%,	±20%/±50%,
			Coeff./Lidar Ratio/Dep. Ratio Cloud Extinction Coeff./Backscat.					±150%/±150% ±50%/±90%.	±110%/±130% ±30%/±70%.	±70%/±100% ±15%/±50%
			Coeff./Lidar Ratio/Dep. Ratio			1km/ <i>10km</i>		±140%/±150%	±100%/±130%	±65%/±100%
			Planetary Boundary Layer Height		-	Tidily Tollin	-	±500m	±300m	±100m
		MSI one-sensor	Cloud Flag/Cloud Phase	0.5km		0.5km	-	±15% Ocean ±20% Land	±15%	±10%
MSI	L2a		Optical Thickness of Liquid Cloud					±10%	±100%	±50%
IVIOI	LZa	Cloud Poducts	Reff. of Liquid Cloud	U.SKIII	_	U.SKIII		±30%	(Converting to LWP)	(Converting to LWP)
			Cloud Top Temp./Pressure/Altitude					±1K (CTT)	±3K (CTT)	±1.5K (CTT)
CPR			Cloud Mask/Cloud Particle Type					-	root mean	-
+ ATLID	L2b	CPR-ATLID synergy Cloud Poducts	Reff./LWC/IWC	1km	0.1km	1km/ <i>10km</i>	0.5km	-	square of errors of one-sensor	±2μm (water) / ±20%/±30%
			Optical Thickness		-		-	-	products	-
OPR +		CPR-ATLID-MSI	Cloud Mask/Cloud Particle Type					-	root mean	-
ATLID	L2b	synergy Cloud Poducts	Reff./LWC/IWC	1km	0.1km	1km/ <i>10km</i>	m/10km 0.5km	_	square of errors of one-sensor	±2μm (water)/ ±20%/±30%
MSI		Gloud Foddets	Optical Thickness		-		-	-	products	-
CPR+	1.25	Four-sensors Synergy	SW/LW Radiative Flux	10km*2		101	-	-	±25W/m2	±10W/m2
ATLID+ MSI+BBR		Radiative Products	SW/LW Radiative Heating Rate	TUKM	0.5km*2	10km	0.5km	-	-	-

Research Products

	Process.			Grid Spacing	
Sensor	Level	Product	Priimary Parameter	Horizontal	Vertical
		CPR One-sensor Doppler Product	Doppler velocity correction value (considering inhomogeneity)/ Doppler velocity unfolding value LWC*/IWC*/Rain Rate/Snow		
CPR	L2a	CPR One-sensor Rain and Snow Product	Rate/Attenuation Corrected Radar Reflectivity Factor	1km/10km	0.5km
		CPR One-sensor Vertical Velocity Product	Vertical air motion/ Sedimentation Velocity		
ATLID	L2a	ATLID One-sensor Aerosol Extinction Product	Aerosol Extinction Coefficient (Water Soluble/Dust/SS/BC)	10km	0.1km
MSI	L2a	MSI One-sensor Ice Cloud Product	Optical Thickness of Ice Cloud with Reflection method/Effetive Radius of Ice(1.6&2.2µm)/Ice Cloud Top Temperature/Pressure/Altitude	0.5km	-
		MSI One-sensor Aerosol Cloud Product	Aerosol Optical Thickness (Ocean/Land)/ Angst. Exp.		
		CPR-ATLID Synergy Particle Mass Ratio Product	Mass Ratio (2D_Ice/IWC)*		0.5km
CPR + ATLID	L2b	CPR-ATLID Synergy Rain and Snow Product	LWC*/IWC*/ Rain Rate/Snow Rate	1km/10km	
		CPR-ATLID Synergy Vertical Velocity Product	Vertical air motion/ Sedimentation Velocity		
ATLID + MSI	L2b	ATLID-MSI Synergy Aerosol Components Product	Aerosol Extinction Coefficient (Water Soluble/Dust/SS/BC) Mode Radius (Fine mode/Coarse mode)	10km	0.1km
		ATLID-MSI Synergy Aerosol Direct Radiave Forcing Product	Aerosol Direct Radiative Forcing (TOA/BOA)	10km	-
		CPR-ATLID-MSI Synergy Cloud Doppler Product	Cloud Mask/Cloud Particle Type/Cloud Effective Radius (Water*Ice)/LWC/ IWC(with Doppler)		0.5km
CPR + ATLID +	L2b		Optical Thickness/LWP/ IWP(with Doppler)	1km/10km	-
MSI	LZD	CPR-ATLID-MSI Synergy Rain and Snow Product CPR-ATLID-MSI Synergy Vertical Velocity Product	LWC*/IWC*/ Rain Rate/Snow Rate Vertical air motion/ Sedimentation Velocity		0.5km
		CPR-ATLID-MSI Synergy Ice Cloud Product	Ice Effective Radius/Optical Thickness	0.5km	-

Auxiliary Product

Sensor	Process. Level	Product	Priimary Parameter	Grid Spacing	
				Horizontal	Vertical
		5011115 000	Temperature/Specific Humidity (CPR Grid)	1km	0.1km
CPR	Aux	ECMWF CPR Grid Product	Pressure (CPR Grid)	_	0.1km
		Grid Product	Surface Pressure/2m Temperature (CPR Grid)	1km	_
		ECMWF ATLID Grid Product	Temperature/Specific Humidity/Ozone Mass Ratio (ATLID Grid)	1km	0.1km
ATLID	Aux		Pressing (ATLID Grid)		0.1km
			Total Column Ozone/10m U-Velocity/ 10m V-Velocity (ATLID Grid)	1km	_
			Temperature/Specific Humidity (MSI Grid)	10km	25 layers*1
MCI	A	Aux ECMWF MSI Grid Product	Pressure (MSI Grid)	_	25 layers*1
MSI	Aux		Total Column Ozone/10m U-Velocity/ 10m V-Velocity/Surface Pressure/ Skin Temperature (MSI Grid)	10km	-

NOTE: The accuracy is defined using the "Pixel Integration Length" in red italic numbers. The accuracies of CPR L1b are defined by 10km integration. Those accuracies except for CPR are assumed under the condition that sensors developed by ESA functioned as expected. The accuracies of ATLID is based on the information before the change of specifications. The length of a scene is defined as the length of an orbit divided equally. "CPR-ATLID-MSI Synergy Cloud Products and Four Sensors Synergy Radiation Budget Products are the final goal of the EarthCARE mission. Therefore, they are defined as the standard products, although they will be released one year after the start of MOP." NRT and Statistics (L2c) will be adjusted appropriately by taking user's needs into account.

Data Products were decided and the accuracy of them were also decided in Joint Mission Advisory Group consists of European and Japanese scientists

References

http://www.jaxa.jp/projects/sat/earthcare/index_e.html http://www.eorc.jaxa.jp/EARTHCARE/en/index.html http://www.esa.int/esaLP/LPearthcare.html

^{*1:} Depends on the resolution of ECMWF data that JAXA will receive by the time of launch *2: The values shown are defined at the time of JAXA CDR. In future, the values may change if there are strong scientific requirements. *3: The values shown are defined when antenna beam width was 0.095 degrees and satellite altitude was 460km. *(in Research Product) including with/without Doppler

2.3 GCOM-C

Climate change observation will be performed by the Second-generation Global Imager (SGLI), a multi-wavelength optical radiometer, on-board the GCOM-C (Climate) satellite on clouds, aerosol, ocean color (marine ecosystem), vegetation, snow and ice.

The first generation of GCOM-C (called GCOM-C) is scheduled to be launched in JFY2016. Its orbit will be sun-synchronous with 798km altitude (over the equator), 98.6 degrees inclination and 10:30 local time of descending node.

SGLI Channel Specifications

SGLI Channel Specifications						
	λ	Δλ	L	L _{max}	SNR at Lstd	IFOV
СН	VN, P, S	SW: nm um	VN, P: W/m²/sr/μm T: Kelvin		VN, P, SW:- T: NE∆T	m
VN1	380	10	60	210	250	250
VN2	412	10	75	250	400	250
VN3	443	10	64	400	300	250
VN4	490	10	53	120	400	250
VN5	530	20	41	350	250	250
VN6	565	20	33	90	400	250
VN7	673.5	20	23	62	400	250
VN8	673.5	20	25	210	250	250
VN9	763	12	40	350	1200 ^{*3}	250
VN10	868.5	20	8	30	400	250
VN11	868.5	20	30	300	200	250
P1	673.5	20	25	250	250	1000
P2	868.5	20	30	300	250	1000
SW1	1050	20	57	248	500	1000
SW2	1380	20	8	103	150	1000
SW3	1630	200	3	50	57	250
SW4	2210	50	1.9	20	211	1000
T1	10.8	0.74	300	340	0.2K	500*2
T2	12.0	0.74	300	340	0.2K	500 ^{*2}

^{*1} Polarization channels (P1 and P2) should have capability to observe at three polarization direction (0, 60,120 deg.) and NADIR / Tilt view at +-45 deg.

^{*2} They have a 250m resolution mode as a potion

^{*3} SNR at 1km resolution

GCOM-C Standard products

Area	Group	Product	Day/night	Grid size	
71104	Отоир	1 Todaet	TIR and	VNR,SWI	
Common	Radiance	Top-Of-Atmosphere radiance (including system geometric correction)	land 2.2mm: Both Other VNR,SWI: Daytime (+special operation)	Land/coast: 250m, offshore: 1km, polarimetory:1km TIR Land/coast: 500m, offshore: 1km	
		Precise geometric correction	Both	250m	
	Surface reflectance	Atmospheric corrected reflectance (incl. cloud detection)		250m	
		Vegetation index		250m	
Land		Above-ground biomass	Daytime	1km	
pl	Vegetation and	Vegetation roughness index		1km	
	carbon cycle	Shadow index fAPAR		250m, 1km 250m	
		Leaf area index		250m	
	Temperature	Surface temperature	Both	500m	
	· · · · · · · · · · · · · · · · · · ·	Cloud flag/Classification	Both	1km	
_	Cloud	Classified cloud fraction	Daytime	1km (scene),	
Atmosphere		Cloud top temp/height	Both		
SOI		Water cloud OT/effective radius		0.1deg (global)	
phe		Ice cloud optical thickness	.		
ere	A I	Aerosol over the ocean Daytime		orradg (gradar)	
	Aerosol	Land aerosol by near ultra violet			
		Aerosol by Polarization Normalized water leaving		250m (coast)	
		radiance			
	Ocean color	(incl. cloud detection)		1km (offshore)	
	Ocean color	Atmospheric correction parameter			
		Photosynthetically available	Daytime		
Осе		radiation		4km (global)	
an	laatau	Chlorophyll-a concentration		(3)	
	In-water	Suspended solid concentration Colored dissolved organic matter			
		Colored dissolved organic matter		500m (coast)	
	Temperature	Sea surface temperature	Both	1km (offshore)	
				4km (global)	
		Snow and Ice covered area		250m (scene)	
Cry	Area/ distribution	(incl. cloud detection)		1km (global)	
lso,		Okhotsk sea-ice distribution	Daytime	250m	
Cryosphere		Snow and ice surface	Dayume	500m (scene)	
ere	Surface properties	Temperature		` '	
·		Snow grain size of shallow layer		1km (global)	

Access to GCOM data

To R&D and operational organizations, JAXA can provide GCOM data which includes standard products, processed data and related information which meets users' needs to user organizations, via the JAXA on-line system (free of charge), optionally via a dedicated communication line or media upon users' needs (minimal cost charged) under the cooperative agreements with JAXA after commissioning (launch + 3 months) for Calibration and Validation, keeping the data latency, if required (GCOM-W1 global data: observation time + 150min.).

To general researchers, JAXA will provide GCOM standard product via the JAXA online system (free of charge) after Calibration and Validation phase in about one year after the launch. Simple registration and consent to data use conditions are required on the system. Before providing GCOM standard products, AMSR and AMSR-E standard products have been available on the system since August, 2011 (https://gcom-w1.jaxa.jp/).

Direct reception; receiving the real-time observation data from the GCOM satellites at the users' ground station can be available, subject to conditions defined by JAXA in an individual agreement. Actual cost due to the direct reception is charged on users, in principle. (e.g. cost for provision and maintenance of processing software)

Secondary distribution is basically prohibited, but R&D user agencies can distribute GCOM data to third parties, provided that they nominate the third parties to JAXA and make them comply with the 'rights and use conditions' specified in the GCOM data policy.

For commercial purpose, JAXA makes license agreements with commercial purpose users and imposes royalties on them.

References

http://www.jaxa.jp/projects/sat/gcom/index_e.html http://suzaku.eorc.jaxa.jp/GCOM/index.html

2.4 GOSAT-2

The Greenhouse Gases Observing Satellite -2 (GOSAT-2) is the next generation of the greenhouse gases measurement satellite. GOSAT-2 measures the concentrations of carbon dioxide, methane and carbon monoxide from space. The spacecraft will be launched in JFY2017.

GOSAT-2 observes the solar light reflected on earth surface and thermal infrared emitted from the atmosphere. Column abundances of CO₂, CH₄ and CO are retrieved from the observed spectra. The mixing ratio of the target gas species is expressed as column-averaged dry air mole fraction above an observed unit surface area of 10.5 km (TBD).

GOSAT-2 flies at an altitude of approximately 666 km (TBD) and completes one revolution in about 100 minutes. The satellite returns to the same point in space in three days (TBD). The observation instrument on-board the satellite is the Thermal and Near-infrared Sensor for carbon Observation (TANSO). TANSO is composed of two subunits: the Fourier Transform Spectrometer -2 (FTS-2) and the Cloud and Aerosol Imager -2 (CAI-2).

Specifications of FTS-2

	Band1	Band2	Band3	Band4	Band5
Spectral coverage	0.754-0.772	1.56-1.69	1.92-2.38	5.6-8.4	8.4-14.3
(μm)					
Targeted gases	O_2	CO ₂ , CH ₄	CO ₂ , H ₂ O, CO	CH₄	CO ₂
Polarization	Yes	Yes	Yes	No	No
observation					
Sampling resolution			0.2		
(cm ⁻¹)					
IFOV (mrad)			15.8		

Specifications of CAI-2

opcomoditions of OAI 2						
	Forward viewing					
	Band1	Band2	Band3	Band4	Band5	
Spectral coverage (nm)	333-353	433-453	664-684	859-879	1585-1675	
Target		Clo	ouds and Ae	erosols		
Spatial resolution (m)		50	00		1000	
Tilt angle (deg)			+20			
Swath (km)	1000					
		В	ackward vie	wing		
	Band6	Band7	Band8	Band9	Band10	
Spectral coverage (nm)	370-390	540-560	664-684	859-879	1585-1675	
target	Clouds and Aerosols					
Spatial resolution (m)	500 1000					
Tilt angle (deg)	-20					
Swath (km)	1000					

GOSAT-2 data products are to be provided for public users. Data users can search and order the Level 1 data (FTS Level 1B, CAI Level 1B data) and the higher level data products (FTS Level 2, CAI Level 2, FTS Level 3, CAI Level 3, Level 4 data products). The Level 1 data and the Level 2 data products whose uncertainties have been evaluated in the instrument calibration and data validation activities are open to the general users. Carbon dioxide flux estimates based on the observational data by GOSAT-2 are released to general users as the Level 4 data products.

The GOSAT-2 data products are distributed to public through the website (TBD).

GOSAT Data Products (TBD)

Product Level	Sensor/Band	Product name	Description
L1B	FTS-2	FTS L1B data	Radiance spectral data
LIB	CAI-2	CAI L1B data	Geometric corrected radiance data
L2		L2 XCO ₂	CO ₂ column abundance data retrieved from SWIR radiance spectral data
	FTS-2/SWIR	L2 XCH₄	CH₄ column abundance data retrieved from SWIR radiance spectral data
		L2 XCO	CO column abundance data retrieved from SWIR radiance spectral data
	ETC 2/TID	L2 CO ₂ profile	CO ₂ vertical profile data retrieved form TIR radiance spectral data
	FTS-2/TIR	L2 CH ₄ profile	CH ₄ vertical profile data retrieved form TIR radiance spectral data
	CAI-2	L2 cloud flag	Cloud coverage data
L3	FTS-2/SWIR	L3 global CO ₂ distribution	CO ₂ column-averaged mixing ratio data projected on a global map
		L3 global CH ₄ distribution	CH ₄ column-averaged mixing ratio data projected on a global map
		L3 global CO distribution	CO column-averaged mixing ratio data projected on a global map
	FTS-2/TIR	L3 global CO ₂ distribution	CO ₂ concentrations at each vertical level projected on a global map
		L3 global CH ₄ distribution	CH ₄ concentrations at each vertical level projected on a global map
	CAI-2	L3 global radiance distribution	Global radiance distribution data
		L3 global reflectance distribution	Clear-sky reflectance data
L4	-	L4 global CO ₂ flux	CO ₂ flux (monthly average)