

CGMS-39 EUM-WP-34 v1, 19 September 2011 Prepared by EUMETSAT Agenda Item: WGIV-38. Discussed in WGIV

## **EUMETSAT REPORT ON THE EVOLUTION OF DATA DISSEMINATION**

In response to CGMS action/recommendation A38.45

EUMETSAT is operating a multi-mission dissemination system consisting of EUMETCast, RMDCN and Internet.

This paper presents to CGMS in more detail the planned evolution of the EUMETSAT multimission dissemination system to accommodate future high data volume demand of MTG and other services. The upgrade of EUMETCast Europe to the DVB-S2 standard will provide the flexibility to add the MTG near real time data in a cost efficient way to the satellite dissemination. This will make MTG data available to all users in the EUMETCast Europe footprint. A subset of these products will be available to users in the EUMETCast Africa footprint. RMDCN is still the appropriate network for operational dissemination of WMO coordinated data for global exchange. A high rate terrestrial dissemination path using DANTE research networks is also explored.

A preliminary MTG dissemination baseline is presented. Updates to the baseline will be published in future papers as they become available.



# **EUMETSAT** Report on the Evolution of Data Dissemination

### 1 INTRODUCTION

The current EUMETSAT dissemination system is composed of near-real-time dissemination using DVB-S broadcast via EUMETCast, point-to-point file based dissemination to the GTS and other organisations via RMDCN, point-to-point file based dissemination to Internet users and also downloads initiated from Internet users. It also includes data download from the Data Centre.

The baseline near real time dissemination system is EUMETCast and is currently operated on EUROBIRD-9A with a bandwidth of 16.5 Mbps (Mbit/sec) which includes all polar and geostationary EUMETSAT missions, foreign satellite data and a range of other data sets and products. With the introduction of Metop-B and NPP data the bandwidth will rise to 20.5 Mbps in 2012.

### 2 PROJECTED FUTURE DISSEMINATION NEEDS

The following launch dates are assumed in this document and form in conjunction with the expected associated data volumes the future needs. It should be noted that the overall outcome of the consolidated approach presented in this document is independent of the accuracy of the launch schedule. The launch schedule and the resulting needs for dissemination mainly impact the timing of the evolutionary steps but not the overall architecture.

Table 1Future needs

| Satellite        | Bandwidth Need Date | Assumed NRT             |
|------------------|---------------------|-------------------------|
|                  |                     | Dissemination Data Rate |
| MSG3             | Q2 2012             | 1 Mbit/s temporary      |
| Metop-B          | Q2 2012             | 1 Mbit/s                |
| NPP              | Q1 2012             | 3-4 Mbit/s              |
| GMES Sentinel-3a | 2013 or later       | 30 Mbit/s               |
| MSG4             | 2014                | 1 Mbit/s temporary      |
| GMES Sentinel-3b | 2015 or later       | 30 Mbit/s               |
| MTG Imager 1     | 2017                | 40 Mbit/s               |
| MTG Sounder 1    | 2018                | 40 Mbit/s               |
| MTG Imager 2     | 2022                | 20 Mbit/s               |

The given data rates are the current best estimates including assumptions made for product and data compression and are therefore still subject to change.



Regarding the dissemination system characteristics the necessity of two generic types of services had been identified:

a common service catering broadly speaking for the Now-Casting needs and also addressing the mass amount of users, with focus on very cheap commercial-of-the-shelf equipment (and small antenna sizes in case of satellite broadcast);

a high volume service catering for the NWP needs and broadly speaking for specialised users with focus on maximum volume dissemination;

### 3 TERRESTRIAL DISSEMINATION EVOLUTION

### 3.1 RMDCN

RMDCN is still and will remain the appropriate network for operational dissemination of WMO coordinated data for global exchange.

Therefore, having a time scale of 5 – 10 years in mind, the following list of future requirements for future RMDCN emerged from a EUMETSAT point of view and have been presented, discussed and agreed within the RMDCN workshop held at ECMWF:

Dissemination of sustained near-real-time data rates in the area of multiple of 10 Mbit/s within Europe;

Dissemination of sustained data rates in the area of <10Mbit/s over the Atlantic and to Asia-Pacific (for bi-lateral data exchange);

Flexible and easy connection of new users to the network;

Guaranteed timeliness;

Differentiated classes of services (priorities):

Multicast and unicast;

Committed SLA and MTTR across the entire network.

# 3.2 DANTE/GEANT, EUMETCast Terrestrial

The DANTE networks are based on the national research networks and span across Europe (GEANT) with links to similar regional networks in Asia, Africa and the Americas. A combination of national research networks in RA-VI is GEANT2. The key aspects and limitations are:

Almost any network topology can be logically implemented using either the backbone or dedicated wavelengths on fibres;

The dedicated wavelengths do not carry inherent redundancy therefore two diverse links are required which is not available in all sites;

Multicast and IPV-6 is supported;



Throughput requirements are usually implemented via over-provision of bandwidth;

No guaranteed Service Level Agreements;

No service management;

Non-profit only use;

Contracts are with the individual NRENs (National Research Networks);

Access to the network is restricted to public or R&D institutes only and needs to be negotiated in the individual cases with the local NREN.

EUMETSAT performed in 2010 in cooperation with DANTE extensive multicast data transfer feasibility tests. The test setup consisted of a number of EUMETSAT computers connected to the GEANT network in London (server) and Amsterdam and Prague (both as clients). A number of different transfer mechanisms were used including the Tellicast multicast system which is implemented in EUMETCast.

These test showed that the usage of a DANTE (in Europe: GEANT) based network provides an effective point to point or point to multipoint data transfer mechanism. Furthermore, the existing EUMETCast platform can be operated with minimal adaptations on the GEANT network, thus providing the same interface to end users as EUMETCast. It can be seen as a terrestrial "footprint extension" to EUMETCast.

As a next step, EUMETSAT is planning to implement in 2012 a EUMETCast platform prototype on GEANT to supply data to a limited number of end users to demonstrate the feasibility of an operational "EUMETCast Terrestrial" dissemination system.

This method can be used for bi-lateral data exchange or to provide high volume data to a limited number of users. A typical case would be the provision of MTG-S L1b full resolution sounder data to interested users.

### 3.3 EUMETSAT Internet Data Service

The Internet provides an affordable way to make smaller volumes of data and products available to both the general user community and specific user groups. It is planned to be a fully operational service with user access managed via the Earth Observation Portal.

These data sets typically consist of:

Image Gallery - Near Real-time Imagery, Visualised Products & RGB Composites, Topical Images;

Low Rate SEVIRI Data, IODC data;

Data Collection Retransmissions - DCP messages;

Test/Trial data flows where data have a low volume and low timeliness requirement.

The anticipated timeframe for implementation of this enhanced service is 2013.



### 4 EUMETCAST EUROPE EVOLUTION AND DVB-S2 MIGRATION

Satellite broadcast is still the most appropriate solution for operational dissemination to a large number of users, and for target areas lacking modern network infrastructure. EUMETSAT will take advantage of the DVB-S2 technology for the Ku band service in Europe to get the most out of the transponder resources, in terms of data rates, availability and service to the users. A migration of EUMETCast Africa or EUMETCast Americas to DVB-S2 is not yet foreseen but might be considered in the future.

A study has been conducted to analyse various DVB-S2 configuration scenarios in order to find the optimal configuration for the future EUMETSAT DVB-S2 dissemination system. The scenarios were based on the currently used transponder on EUROBIRD-9A, but the results are valid for any transponder.

The basic result is to provide, corresponding to the dissemination needs, two services: a common service and a high volume services. The two services can co-exist on one transponder or may be spread over multiple transponders.

This scenario, which is described in more detail in the next paragraphs, has been tested on a transponder on EUROBIRD-9A with representative antenna sizes for the core footprint. The results were better than the link budget calculations suggested. Therefore there is room for higher throughput when the service will actually be implemented.

### 4.1 The Common Service

The common service is the continuation of the current EUMETCast service for all users. The DVB-S2 transmission parameters, the modulation and coding (Modcode), are optimised to serve the existing user side antenna infrastructure. This means that users will have the same availability compared to now using the existing (DVB-S) antennas. As a minimum users have to upgrade the DVB reception device. Using 8PSK 3/5 on a 34 MHz transponder, a net bitrate (on file level, without protocol overhead) of 44 Mbps is achievable.

Data available through the common service will be the current set on EUMETCast Europe, with the addition of NPP, Metop-B and other mostly small data streams. In future a sub-set of MTG data might also be included in the common service.

## 4.2 The High Volume Service

The high volume service provides the highest throughput for special users, with still acceptable antenna sizes for high service availability. The calculations show that with twice as large antennas 50% more throughput is possible compared to the common service, i.e. 66 Mbps net bitrate on a 34 MHz transponder using 8PSK 9/10.



For the smaller antennas of the common service users the link margin is still high enough to have a 100% service at clear sky conditions - however the rain availability will be degraded.

It is currently foreseen to disseminate the future high volume products on the high volume service, such as:

**GMES Sentinel-3 products** 

MTG Image: Imaging data, meteorological products, and MTG Sounder: reduced sub-set principal components

### 4.3 DVB-S2 VCM mode

EUMETSAT will use the DVB-S2 VCM (variable coding modulation) mode which requires DVB reception equipment supporting this mode. A number of professional and consumer grade cards/boxes are available on the market. This mode has the advantage that both, common and high volume service can be operated simultaneously on the same transponder. Also, the reallocation of bandwidth between the services can be done dynamically without changes needed on user stations.

# 4.4 Migration schedule

Technically, the need for an upgrade to DVB-S2 arises when the bandwidth occupied by EUMETCast reaches a full transponder, due to the limited availability of shared DVB-S services. The schedule is also driven by the contractual arrangements. This leads to an earliest introduction of DVB-S2 in 2013, but it may take as long as 2017 if the anticipated bandwidth needs do not materialise.

## 5 MTG DISSEMINATION BASELINE

A preliminary MTG dissemination baseline can be seen in annex A. It shows a breakdown of the centrally produced MTG products, its characteristics and the availability mechanism for users. Please note that this list is not yet finalised and subject to change. A refined baseline, also regarding assignment of data to the EUMETCast common or high volume service and the availability of products in EUMETCast Africa, will be available in the future.

## 6 CONCLUSIONS

CGMS is invited to take note of the current status and evolution of the EUMETSAT multi-mission dissemination system, and the preliminary MTG dissemination baseline.



### ANNEX A: CENTRALLY GENERATED PRODUCT LIST

This Annex A shows the list and characteristics of the disseminated and internal products to be generated at the EUMETSAT Central Application Facility. The list indicates the generation, periodicity and the dissemination service baseline (EUMETCast, high rate terrestrial dissemination, RMDCN or internet) for all missions. A periodicity of zero minutes means that the product is not going to be disseminated via the particular dissemination service. The EUMETSAT Data Centre (UMARF) provides the functionality to archive the datasets of intermediate data levels. Level 0 data is always stored as it is the basis for historical reprocessing. The details about Level 2 products to be archived are identified in the column "EUMETSAT Data Centre". All FCI, IRS and LI Level 2 products shall be archived in the Data Centre, this is reflected in the entries of the "UMARF periodicity column". It is still TBD in **Error! Reference source not found.** whether the UVN Level 2 products are going to be archived or not.

The list and the characteristics will be refined through the course of the programme. The lists here are only for information and indicative as the up to date reference list is defined in the [EURD] and its annexes **Error! Reference source not found.** 

| ID      | Archived or<br>Disseminated<br>Dataset                                         | Science<br>Data<br>Level | Format<br>(1)                   | Coverage<br>(2) | Resolution<br>(3) | Generation<br>periodicity<br>(4) in min | EUMETCast<br>periodicity in<br>min | High-Rate<br>terr.<br>periodicit<br>y in min | RMDCN<br>periodicity<br>in min (5) | Internet<br>(SDDI)<br>periodicity<br>in min | U-MARF<br>periodicit<br>y in min |
|---------|--------------------------------------------------------------------------------|--------------------------|---------------------------------|-----------------|-------------------|-----------------------------------------|------------------------------------|----------------------------------------------|------------------------------------|---------------------------------------------|----------------------------------|
| FES_000 |                                                                                |                          |                                 | FC              | CI-FULL DISC SC   | AN SERVICE (F                           | FCI-FDSS)                          |                                              |                                    |                                             |                                  |
| FES_001 | FCI-FDSS <level 0=""></level>                                                  | 0+                       | netCDF-4<br>(packets<br>inside) | Full disc       | SSD               | 10                                      | 0                                  | 0                                            | 0                                  | 0                                           | 10                               |
| FES_002 | FCI-FDSS <level 1<br="">dataset&gt; (16 Channels<br/>+ 1 fire channel)</level> | 1c                       | netCDF-4                        | Full disc       | SSD               | 10                                      | 10                                 | 10                                           | 0                                  | 0                                           | 10                               |



| 00111    |                                                                                                                                                |    |                                 |                   | ,                | coptombor 2    |                  |      |    |     |     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------|-------------------|------------------|----------------|------------------|------|----|-----|-----|
| FES-007  | Deleted                                                                                                                                        |    |                                 |                   |                  |                |                  |      |    |     |     |
| FES_008  | Low resolution FCI<br>FDSS <level 1<br="">dataset&gt; (16 channels<br/>or only VIS 0.6, NIR<br/>1.6, IR 3.8, WV6.3, IR<br/>10.5 (TBC))</level> | 1c | JPEG 2000                       | Full disc<br>TBC  | > SSD            | 30             | 30               | 10   | 30 | 30  | 30  |
| SDDI_000 |                                                                                                                                                |    |                                 | INTERNET D        | OWNLOADING P     | UBLIC SERVIC   | E (as per [DATAF | PO]) |    |     |     |
| SDDI_001 | All 16 channels or full<br>spectral resolution (16<br>channels) TBC                                                                            | 1c | JPEG 2000                       | Full disc         | 800*800<br>[TBC] | 360            | 0                | 0    | 0  | 360 | 360 |
| SDDI_002 | VIS 0.6, IR3.8, WV 6.3<br>& IR 10.5                                                                                                            | 1c | JPEG 2000                       | Full disc         | 800*800          | 180            | 0                | 0    | 0  | 180 | 180 |
| SDDI_003 | VIS 0.6, IR3.8, WV 6.3<br>& IR 10.5                                                                                                            | 1c | animation<br>loop               | Full disc         | 800*800          | 180            | 0                | 0    | 0  | 180 | 180 |
| SDDI_004 | VIS 0.6, IR3.8, WV 6.3<br>& IR 10.5                                                                                                            | 1c | JPEG 2000                       | Europe            | 600*600          | 60             | 0                | 0    | 0  | 60  | 60  |
| SDDI_005 | VIS 0.6, IR3.8, WV 6.3<br>& IR 10.5                                                                                                            | 1c | animation<br>loop               | Europe            | 600*600          | 60             | 0                | 0    | 0  | 60  | 60  |
| SDDI_006 | VIS 0.6, IR3.8, WV 6.3<br>& IR 10.5                                                                                                            | 1c | JPEG 2000                       | Non-<br>europe    | 600*600          | 180            | 0                | 0    | 0  | 180 | 180 |
| SDDI_007 | VIS 0.6, IR3.8, WV 6.3<br>& IR 10.5                                                                                                            | 1c | animation<br>loop               | Non-<br>europe    | 600*600          | 180            | 0                | 0    | 0  | 180 | 180 |
| RSS_000  |                                                                                                                                                |    |                                 | F                 | CI-RAPID SCANN   | IING SERVICE ( | (FCI-RSS)        |      |    |     |     |
| RSS_001  | FCI-RSS < level 0>                                                                                                                             | 0+ | netCDF-4<br>(packets<br>inside) | 1/4 disc<br>North | SSD              | 2.5            | 0                | 0    | 0  | 0   | 2.5 |
| RSS_002  | HRFI channels<br>(VIS0.6, NIR2.2, IR3.8,<br>IR10.5) at high<br>resolution                                                                      | 1c | netCDF-4                        | 1/4 disc<br>North | SSD              | 2.5            | 2.5              | 2.5  | 0  | 0   | 2.5 |
| RSS_007  | Deleted                                                                                                                                        |    |                                 |                   |                  |                |                  |      |    |     |     |

% *ссмs* 

| RSS_008 | Low resolution FCI<br>HRFI <dataset> (VIS<br/>0.6, NIR 2.2, IR 3.8, IR<br/>10.5)</dataset> | 1c | netCDF-4                        | Full disc<br>TBC             | > SSD        | 30           | 30            | 30     | 30  | 30  | 30  |
|---------|--------------------------------------------------------------------------------------------|----|---------------------------------|------------------------------|--------------|--------------|---------------|--------|-----|-----|-----|
| IRS_000 |                                                                                            |    | IN                              | FRA RED SOU                  | NDER LOCAL A | REA SCANNING | SERVICES (IRS | -LASS) |     |     |     |
| IRS_006 | IRS-LAC4<br>Interferogramme                                                                | 0+ | netCDF-4<br>(packets<br>inside) | 1/4 disc<br>North            | SSD          | 30           | 0             | 0      | 0   | 0   | 30  |
| IRS_007 | IRS-LAC3<br>Interferogramme                                                                | 0+ | netCDF-4<br>(packets<br>inside) | 1/4 disc<br>middle/Nort<br>h | SSD          | 72           | 0             | 0      | 0   | 0   | 72  |
| IRS_008 | IRS-LAC2<br>Interferogramme                                                                | 0+ | netCDF-4<br>(packets<br>inside) | 1/4 disc<br>middle/Sou<br>th | SSD          | 90           | 0             | 0      | 0   | 0   | 90  |
| IRS_009 | IRS-LAC1<br>Interferogramme                                                                | 0+ | netCDF-4<br>(packets<br>inside) | 1/4 disc<br>South            | SSD          | 120          | 0             | 0      | 0   | 0   | 120 |
| IRS_010 | IRS-LASS4 sounding radiances                                                               | 1b | TBD                             | 1/4 disc<br>North            | SSD          | 30           | 0             | 0      | 0   | 0   | 30  |
| IRS_011 | IRS-LASS3 sounding radiances                                                               | 1b | TBD                             | 1/4 disc<br>middle/Nort<br>h | SSD          | 72           | 0             | 0      | 0   | 0   | 72  |
| IRS_012 | IRS-LASS2 sounding radiances                                                               | 1b | TBD                             | 1/4 disc<br>middle/Sou<br>th | SSD          | 90           | 0             | 0      | 0   | 0   | 90  |
| IRS_013 | IRS-LASS1 sounding radiances                                                               | 1b | TBD                             | 1/4 disc<br>South            | SSD          | 120          | 0             | 0      | 0   | 0   | 120 |
| IRS_015 | Deleted                                                                                    |    |                                 |                              |              |              |               |        |     |     |     |
| IRS-016 | IRS-LASS4 reduced<br>sub-set of 300<br>Principal Components                                | 1b | BUFR                            | 1/4 disc<br>North            | SSD          | 30           | 30            | 0      | 60  | 60  | 30  |
| IRS-017 | IRS-LASS3 reduced<br>sub-set of 300<br>Principal Components                                | 1b | BUFR                            | 1/4 disc<br>middle/Nort<br>h | SSD          | 72           | 72            | 0      | 144 | 144 | 72  |
| IRS-018 | IRS-LASS2 reduced<br>sub-set of 300<br>Principal Components                                | 1b | BUFR                            | 1/4 disc<br>middle/Sou<br>th | SSD          | 90           | 90            | 0      | 180 | 180 | 90  |



| 001111  |                                                             |    |                                 |                      |                                                                           |             |                  |              |      |     |      |
|---------|-------------------------------------------------------------|----|---------------------------------|----------------------|---------------------------------------------------------------------------|-------------|------------------|--------------|------|-----|------|
| IRS-019 | IRS-LASS1 reduced<br>sub-set of 300<br>Principal Components | 1b | BUFR                            | 1/4 disc<br>South    | SSD                                                                       | 120         | 120              | 0            | 240  | 240 | 120  |
| LS_000  |                                                             |    |                                 |                      | LIGHTN                                                                    | ING SERVICE |                  |              |      |     |      |
| LS_001  | Lightning event trigger<br>and Background<br>Image          | 0+ | netCDF-4<br>(packets<br>inside) | disc of 16°<br>[TBC] | SSD                                                                       | 1           | 0                | 0            | 0    | 0   | 1    |
| LS_002  | Lightning event (LE)                                        | 1b | netCDF-4                        | IFOV                 | SSD                                                                       | 0.10        | 10               | 10           | 20   | 20  | 10   |
| LS_004  | Background Lightning image                                  | 1b | netCDF-4                        | disc of 16°<br>[TBC] | SSD                                                                       | 1           | 0                | 0            | 0    | 0   | 1    |
| UVN_000 |                                                             |    |                                 |                      | UVN SOUNDER                                                               | SCANNING SE | RVICES           |              |      |     |      |
| UVN_001 | UVN Level 0<br>measurement data                             | 0+ | netCDF-4<br>(packets<br>inside) | Europe               | SSD                                                                       | 5           | 0                | 0            | 0    | 0   | 5    |
| UVN_002 | UVN sounding radiances                                      | 1b | netCDF-4                        | Europe               | SSD                                                                       | 60          | 60               | 60           | 0    | 0   | 60   |
| UVN_003 | UVN Irradiances                                             | 1b | netCDF-4                        | Europe               | SSD                                                                       | 1440        | 1440             | 1440         | 0    | 0   | 1440 |
| MET_000 |                                                             |    | Level 2 (                       | CORE METEO           | ROLOGICAL PRO                                                             | DUCT SERVIC | E (FCI based, MS | G continuity | )    |     |      |
|         | FCI All sky radiance                                        |    | BUFR                            | Full disc            | 16 * 16 IR<br>Pixels                                                      | 10          | 10               | 10           | 10   |     | 10   |
| MET_002 | FCI- All Sky Radiance<br>(ASR)                              | 2  | BUFR                            | disc                 | 16 * 16 IR<br>Pixel (for 8<br>Channels * 6<br>products * 3<br>parameters) | 10          | 10               | 10           | 10   | 0   | 10   |
|         | FCI Clear sky reflectance map                               |    | GRIB                            | Full disc            | SW Pixel                                                                  | 1440        | 1440             | 1440         | 1440 |     | 1440 |
| MET_008 | Clear Sky Reflectance<br>Map (CRM)                          | 2  | GRIB                            | disc                 | SW Pixel (6<br>sw non<br>absorbing<br>channels)                           | 1440        | 1440             | 1440         | 0    | 0   | 1440 |
|         | FCI SCENE                                                   |    | GRIB                            | Full disc            | IR Pixel                                                                  | 10          | 10               | 10           | 10   |     | 10   |
| MET_007 | Clear / Cloud Flag<br>(CLM)                                 | 2  | GRIB                            | disc                 | IR Pixel (1 parameter)                                                    | 10          | 10               | 10           | 0    | 0   | 10   |



| MET_025 | Dust Storm Detection                      | 2 | GRIB | disc      | IR Pixel (1 parameter)              | 10 | 10 | 10 | 0  | 0  | 10 |
|---------|-------------------------------------------|---|------|-----------|-------------------------------------|----|----|----|----|----|----|
| MET_013 | Fire Detection (FIRA)                     | 2 | GRIB | disc      | IR Pixel (1 parameter)              | 10 | 10 | 10 | 0  | 10 | 10 |
| MET_028 | Volcanic Ash                              | 2 | GRIB | disc      | IR Pixel (1 parameter)              | 10 | 10 | 10 | 0  | 0  | 10 |
|         | FCI OCA                                   |   | GRIB | Full disc | IR Pixel                            | 10 | 10 | 10 | 0  |    | 10 |
| MET_030 | Cloud drop effective radius - Cloud top   | 2 | GRIB | disc      | IR Pixel                            | 10 | 10 | 10 | 0  |    | 10 |
| MET_031 | Cloud optical depth                       | 2 | GRIB | disc      | IR Pixel                            | 10 | 10 | 10 | 0  |    | 10 |
| MET_032 | Cloud sub-pixel fraction                  | 2 | GRIB | disc      | IR Pixel                            | 10 | 10 | 10 | 0  |    | 10 |
| MET_033 | Cloud top phase                           | 2 | GRIB | disc      | IR Pixel                            | 10 | 10 | 10 | 0  |    | 10 |
| MET_034 | Cloud top pressure temperature and height | 2 | GRIB | disc      | IR Pixel                            | 10 | 10 | 10 | 0  |    | 10 |
|         | FCI AMVs                                  |   | BUFR | Full disc | Synoptic<br>scale <80km<br>[TBC]    | 60 | 60 | 60 | 60 |    | 60 |
| MET_001 | Atmospheric Motion<br>Vectors (AMV)       | 2 | BUFR | disc      | Synoptic scale<br><80km [TBC]       | 60 | 60 | 60 | 60 | 0  | 60 |
|         | FCI GII                                   |   | BUFR | Full disc | 3 x 3 pixels<br>(TBC)               | 10 | 10 | 10 | 0  |    | 10 |
| MET_012 | Global Instability<br>Indices (GII)       | 2 | BUFR | disc      | 3 by 3 Pixels<br>(TBC) 2<br>indices | 10 | 10 | 10 | 0  | 0  | 10 |
| MET_020 | Ozone - Total column<br>(TOZ)             | 2 | BUFR | disc      | 3 by 3 Pixels                       | 10 | 10 | 10 | 0  | 0  | 10 |
| MET_021 | Specific humidity -<br>Lower Troposphere  | 2 | BUFR | disc      | 3 by 3 Pixels                       | 10 | 10 | 10 | 0  | 0  | 10 |
| MET_022 | Specific humidity -<br>Middle Troposphere | 2 | BUFR | disc      | 3 by 3 Pixels                       | 10 | 10 | 10 | 0  | 0  | 10 |
| MET_023 | Specific humidity -<br>Upper Troposphere  | 2 | BUFR | disc      | 3 by 3 Pixels                       | 10 | 10 | 10 | 0  | 0  | 10 |



| MET_024 | Specific humidity -<br>Total column                 | 2 | BUFR | disc                                                   | 3 by 3 Pixels | 10         | 10  | 10  | 0   | 0   | 10   |
|---------|-----------------------------------------------------|---|------|--------------------------------------------------------|---------------|------------|-----|-----|-----|-----|------|
|         | FCI Aerosol                                         |   | GRIB |                                                        | SW Pixel      | 60         | 60  | 60  |     |     | 60   |
| MET_015 | Aerosol asymmetry parameter                         | 2 | GRIB | disc                                                   | SW Pixel      | 60         | 60  | 60  | 60  |     | 60   |
| MET_016 | Aerosol optical depth -<br>Total column             | 2 | GRIB | disc                                                   | SW Pixel      | 60         | 60  | 60  | 60  |     | 60   |
| MET_017 | Aerosol refractive index                            | 2 | GRIB | disc                                                   | SW Pixel      | 60         | 60  | 60  | 60  |     | 60   |
| MET_018 | Aerosol single scattering albedo                    | 2 | GRIB | disc                                                   | SW Pixel      | 60         | 60  | 60  | 60  |     | 60   |
| MET_019 | Aerosol size distribution                           | 2 | GRIB | disc                                                   | SW Pixel      | 60         | 60  | 60  | 60  |     | 60   |
|         | FCI processing of<br>external algorithms            |   | TBD  |                                                        | TBD           | TBD        | TBD | TBD | TBD | TBD | TBD  |
|         | TBD                                                 |   |      |                                                        |               |            |     |     |     |     |      |
|         | FCI Internal Products archived                      |   |      |                                                        |               |            |     |     |     |     |      |
| MET_050 | FCI ISCCP                                           | 2 | IDS  |                                                        |               | On request |     |     |     |     |      |
| MET_051 | FCI Surface Emissivity -<br>Surface Emissivity      | 2 | GRIB | disc                                                   | SW Pixel      | 60         |     |     |     |     | 60   |
| MET_052 | FCI Cloud Analysis -<br>Cloud cover                 | 2 | GRIB | disc                                                   | IR pixel      | 10         |     |     |     |     | 10   |
| MET_053 | FCI Cloud Analysis -<br>Total column                | 2 | GRIB | disc                                                   | IR pixel      | 10         |     |     |     |     | 10   |
| MET_054 | FCI Cloud Analysis -<br>Cloud top phase             | 2 | GRIB | disc                                                   | IR pixel      | 10         |     |     |     |     | 10   |
| MET_055 | FCI Cloud Analysis -<br>Cloud top pressure          | 2 | GRIB | disc                                                   | IR pixel      | 10         |     |     |     |     | 10   |
| MET_056 | FCI Cloud Analysis -<br>Cloud top temperature       | 2 | GRIB | disc                                                   | IR pixel      | 10         |     |     |     |     | 10   |
| MET_057 | FCI Cloud Analysis -<br>Cloud top height            | 2 | GRIB | disc                                                   | IR pixel      | 10         |     |     |     |     | 10   |
| MET_058 | FCI Cloud Analysis -<br>Cloud type                  | 2 | GRIB | disc                                                   | IR pixel      | 10         |     |     |     |     | 10   |
| MET_059 | FCI HPI - Accumulated precipitation (over 24 hours) | 2 | HPI  | +/- 40°<br>latitude; +/-<br>50°<br>longitude of<br>SSP | IR pixel      | 1440       |     |     |     |     | 1440 |
| MET_060 | FCI FCDRs - TBD                                     | 2 | TBD  | TBD                                                    | TBD           | TBD        |     |     |     |     | yes  |
| MET_061 | FCI FCDRs - Outgoing LW irradiance at TOA           | 2 | TBD  | TBD                                                    | TBD           | TBD        |     |     |     |     | yes  |



| MET_062        | FCI TCDRs - TBD                               | 2 | TBD     | TBD                          | TBD                                | TBD         |                   |              |     |     | yes |
|----------------|-----------------------------------------------|---|---------|------------------------------|------------------------------------|-------------|-------------------|--------------|-----|-----|-----|
| METIRS_00      |                                               |   | Level 2 | NEW METEOR                   | ROLOGICAL PRO                      | DUCT SERVIC | E (IRS derived ne | ew products) |     |     |     |
|                | IRS Profiles                                  |   | BUFR    | 1/4 disc                     | IRS Pixel<br>~100 levels           | 30          | 30                | 30           | TBD | TBD | 30  |
| METIRS_00      | Atmospheric<br>temperature profile<br>(THPP4) | 2 | BUFR    | 1/4 disc<br>Zone 4           | IRS Pixel<br>~100 levels           | 30          | 30                | 30           |     | 0   | 30  |
| METIRS_00      | Humidity profile<br>(THPP4)                   | 2 | BUFR    | 1/4 disc<br>Zone 4           | IRS Pixel<br>~100 levels           | 30          | 30                | 30           |     | 0   | 30  |
| METIRS_00      | Atmospheric<br>Temperature profile<br>(THPP3) | 2 | BUFR    | 1/4 disc<br>Zone 3           | IRS Pixel<br>~100 levels           | 72          | 72                | 72           |     | 0   | 72  |
| METIRS_00      | Humidity profile<br>(THPP3)                   | 2 | BUFR    | 1/4 disc<br>Zone 3           | IRS Pixel<br>~100 levels           | 72          | 72                | 72           |     | 0   | 72  |
| METIRS_01      | Atmospheric<br>Temperature profile<br>(THPP2) | 2 | BUFR    | 1/4 disc<br>Zone 2           | IRS Pixel<br>~100 levels           | 90          | 90                | 90           |     | 0   | 90  |
| METIRS_00      | Humidity profile<br>(THPP2)                   | 2 | BUFR    | 1/4 disc<br>Zone 2           | IRS Pixel<br>~100 levels           | 90          | 90                | 90           |     | 0   | 90  |
| METIRS_00      | Atmospheric<br>Temperature profile<br>(THPP1) | 2 | BUFR    | 1/4 disc<br>Zone 1           | IRS Pixel<br>~100 levels           | 120         | 120               | 120          |     | 0   | 120 |
| METIRS_00      | Humidity profile<br>(THPP1)                   | 2 | BUFR    | 1/4 disc<br>Zone 1           | IRS Pixel<br>~100 levels           | 120         | 120               | 120          |     | 0   | 120 |
| METIRS_00      | Clear Sky Wind profile<br>(CSWP4)             | 2 | BUFR    | 1/4 disc<br>North            | TBD                                | 60          | 30                | 30           |     |     | 60  |
| METIRS_01      | Clear Sky Wind profile<br>(CSWP3)             | 2 | BUFR    | 1/4 disc<br>middle/Nort<br>h | TBD                                | 360         | 72                | 72           |     |     | 360 |
| METIRS_01      | Clear Sky Wind profile<br>(CSWP2)             | 2 | BUFR    | 1/4 disc<br>middle/Sou<br>th | TBD                                | 360         | 90                | 90           |     |     | 360 |
| METIRS_01<br>5 | Clear Sky Wind profile<br>(CSWP1)             | 2 | BUFR    | 1/4 disc<br>South            | TBD                                | 360         | 120               | 120          |     |     | 360 |
| METIRS_01      | Atmospheric composition-Z4                    | 2 | TBD     | 1/4 disc<br>North            | IRS Pixel<br>(5 parameters<br>TBC) | 30          | 30                | 30           |     |     | 30  |



| 001111         |                                                          |   |      |                              | ,                                  | ooptombor z               | _ • • • |     |     |     |     |
|----------------|----------------------------------------------------------|---|------|------------------------------|------------------------------------|---------------------------|---------|-----|-----|-----|-----|
| METIRS_01      | Atmospheric composition-Z3                               | 2 | TBD  | 1/4 disc<br>middle/Nort<br>h | IRS Pixel<br>(5 parameters<br>TBC) | 72                        | 72      | 72  |     |     | 72  |
| METIRS_01      | Atmospheric composition-Z2                               | 2 | TBD  | 1/4 disc<br>middle/Sou<br>th | IRS Pixel<br>(5 parameters<br>TBC) | 90                        | 90      | 90  |     |     | 90  |
| METIRS_01      | Atmospheric composition-Z1                               | 2 | TBD  | 1/4 disc<br>South            | IRS Pixel<br>(5 parameters<br>TBC) | 120                       | 120     | 120 |     |     | 120 |
| METIRS_00<br>5 | Cloud Product (IRS-<br>CP4)                              | 2 | BUFR | 1/4 disc<br>North            | IRS Pixel<br>(5 parameters<br>TBC) | 30                        | 30      | 30  |     |     | 30  |
| METIRS_02      | Cloud Product (IRS-<br>CP3)                              | 2 | BUFR | 1/4 disc<br>middle/Nort<br>h | IRS Pixel<br>(5 parameters<br>TBC) | 72                        | 72      | 72  |     |     | 72  |
| METIRS_02      | Cloud Product (IRS-<br>CP2)                              | 2 | BUFR | 1/4 disc<br>middle/Sou<br>th | IRS Pixel<br>(5 parameters<br>TBC) | 90                        | 90      | 90  |     |     | 90  |
| METIRS_02      | Cloud Product (IRS-<br>CP1)                              | 2 | BUFR | 1/4 disc<br>South            | IRS Pixel<br>(5 parameters<br>TBC) | 120                       | 120     | 120 |     |     | 120 |
| METIRS_00      | Total tropospheric column amounts of O3 and CO (IRS) TBD | 2 | BUFR | TBD                          | TBD                                | 60mn (TBC)<br>or 6 hours? |         |     |     |     |     |
|                | IRS processing of external algorithms                    |   | TBD  |                              | TBD                                | TBD                       | TBD     | TBD | TBD | TBD | TBD |
|                | TBD                                                      |   |      |                              |                                    |                           |         |     |     |     |     |
|                | IRS Internal Products archived                           |   |      |                              |                                    |                           |         |     |     |     |     |
| METIRS_05      | IRS scene analysis -<br>Clear / cloud flag               | 2 | BUFR | ¼ disc<br>(LAC zone<br>4)    | IRS pixel                          | 30                        |         |     |     |     |     |
| METIRS_05      | IRS scene analysis -<br>Cloud fraction (TBC)             | 2 | BUFR | ¼ disc<br>(LAC zone<br>4)    | IRS pixel                          | 30                        |         |     |     |     |     |
| METIRS_05      | IRS scene analysis -<br>Cloud top pressure               | 2 | BUFR | ¼ disc<br>(LAC zone          | IRS pixel                          | 30                        |         |     |     |     |     |



| 001111    |                                                         |   |          |                             |              | Coptombor 2                          |                   |             |   |   |     |
|-----------|---------------------------------------------------------|---|----------|-----------------------------|--------------|--------------------------------------|-------------------|-------------|---|---|-----|
| 2         |                                                         |   |          | 4)                          |              |                                      |                   |             |   |   |     |
| METIRS_05 | IRS scene analysis -<br>Cloud top temperature           | 2 | BUFR     | ¼ disc<br>(LAC zone<br>4)   | IRS pixel    | 30                                   |                   |             |   |   |     |
| METIRS_05 | IRS scene analysis -<br>Land / ocean flag               | 2 | BUFR     | 1/4 disc<br>(LAC zone<br>4) | IRS pixel    | 30                                   |                   |             |   |   |     |
| METIRS_05 | IRS scene analysis -<br>Sun glint                       | 2 | BUFR     | ¼ disc<br>(LAC zone<br>4)   | IRS pixel    | 30                                   |                   |             |   |   |     |
| METIRS_05 | IRS PCA compression -<br>PC scores for IRS<br>radiances | 2 | TBD      | LAC zones<br>1 to 4         | IRS pixel    | LAC zones 1<br>to 4 repeat<br>cycles |                   |             |   |   |     |
| METIRS_05 | IRS first guess -<br>Atmospheric<br>temperature profile | 2 | BUFR     | 1/4 disc<br>(LAC zone<br>4) | IRS pixel    | 30                                   |                   |             |   |   |     |
| METIRS_05 | IRS first guess -<br>Specific humidity<br>profile       | 2 | BUFR     | ¼ disc<br>(LAC zone<br>4)   | IRS pixel    | 30                                   |                   |             |   |   |     |
| METIRS_05 | IRS first guess -<br>Ozone profile (TBC)                | 2 | BUFR     | 1/4 disc<br>(LAC zone<br>4) | IRS pixel    | 30                                   |                   |             |   |   |     |
| METIRS_06 | IRS first guess -<br>Surface Emissivity<br>spectrum     | 2 | BUFR     | 1/4 disc<br>(LAC zone<br>4) | IRS pixel    | 30                                   |                   |             |   |   |     |
| METIRS_06 | IRS FCDRs - TBD                                         | 2 | TBD      | TBD                         | TBD          | TBD                                  |                   |             |   |   |     |
| METIRS_06 | IRS TCDRs - TBD                                         | 2 | TBD      | TBD                         | TBD          | TBD                                  |                   |             |   |   |     |
| METLI_000 |                                                         |   | Level    | 2 NEW METEO                 | ROLOGICAL PR | ODUCT SERVICE                        | E (LI derived nev | w products) |   |   |     |
| METLI_001 | DELETED                                                 | 2 | netCDF-4 | disc of 16°<br>[TBC]        | SSD          | 30s [TBC]                            |                   |             |   |   |     |
| METLI_002 | Lightning flash (LI-LF)                                 | 2 | netCDF-4 | disc of 16°<br>[TBC]        | various      | 0.5                                  | 0.5               | 0.5         | 0 | 0 | 0.5 |
| METLI_006 | Flash densities and flash rates (LI-FD)                 | 2 | netCDF-4 | disc of 16°<br>[TBC]        | SSD          | TBD                                  |                   |             |   |   |     |
| METLI_003 | Lightning jump<br>signature (LI-LJS)                    | 2 | netCDF-4 | disc of 16°<br>[TBC]        | SSD          | TBD                                  |                   |             |   |   |     |



|                |                                                                    |   |          |                      | ,            | ooptombor i  |                  |              |     |     |     |
|----------------|--------------------------------------------------------------------|---|----------|----------------------|--------------|--------------|------------------|--------------|-----|-----|-----|
| METLI_004      | Lightning warning-first CG (LI-LW)                                 | 2 | netCDF-4 | disc of 16°<br>[TBC] | SSD          | TBD          |                  |              |     |     |     |
| METLI_009      | NOX production estimate (LI-NOX)                                   | 2 | netCDF-4 | disc of 16°<br>[TBC] | SSD          | TBD          |                  |              |     |     |     |
| METLI_007      | Cell tracking (LI-CT)                                              | 2 | BUFR     | disc of 16°<br>[TBC] | SSD          | 0.5          | 0.5              | 0.5          | 0   | 0   | 0.5 |
| METLI_008      | Quantitative<br>precipitation estimate<br>(LI-QPE)                 | 2 | BUFR     | disc of 16°<br>[TBC] | SSD          | 0.5          | 0.5              | 0.5          | 0   | 0   | 0.5 |
| METLI_010      | LI initial processing -<br>Lightning events                        | 2 | BUFR     | disc of 16°<br>[TBC] | LI pixel     | 0.5          | 0.5              | 0            | 0   | 0   |     |
| METLI_011      | LI initial processing -<br>Lightning groups                        | 2 | BUFR     | disc of 16°<br>[TBC] | LI pixel     | 0.5          | 0.5              | 0            | 0   | 0   |     |
| METLI_012      | LI initial processing -<br>Lightning flash                         | 2 | BUFR     | disc of 16°<br>[TBC] | LI pixel     | 0.5          | 0.5              | 0            | 0   | 0   |     |
|                | LI processing of external algorithms                               |   | TBD      |                      | TBD          | TBD          | TBD              | TBD          | TBD | TBD | TBD |
|                | TBD                                                                |   |          |                      |              |              |                  |              |     |     |     |
|                | LI Internal Products archived                                      |   |          |                      |              |              |                  |              |     |     |     |
| METLI_050      | LI Background scene<br>processing -<br>Background radiance<br>maps | 2 | BUFR     | disc of 16°<br>[TBC] | LI pixel     | 5.0          |                  |              |     |     |     |
| METUVN_00<br>0 |                                                                    |   | Level 2  | NEW METEOR           | OLOGICAL PRO | DUCT SERVICE | E (UVN derived n | ew products) |     |     |     |
| METUVN_00      | NO2 total vertical column / tropospheric column (UVN-NO2)          | 2 | netCDF-4 | Europe               | SSD          |              |                  |              |     |     |     |
| METUVN_00<br>2 | O3 total vertical column (UVN-TVC)                                 | 2 | netCDF-4 | Europe               | SSD          |              |                  |              |     |     |     |
| METUVN_00      | O3 profile /<br>tropospheric column<br>(UVN-O3P)                   | 2 | netCDF-4 | Europe               | SSD          |              |                  |              |     |     |     |
| METUVN_00<br>4 | O2 A-band Cloud<br>Product (UVN-CP1)                               | 2 | netCDF-4 | Europe               | SSD          |              |                  |              | _   |     |     |
| METUVN_00<br>5 | O2-O2 Cloud Product<br>(UVN-CP2)                                   | 2 | netCDF-4 | Europe               | SSD          |              |                  |              |     |     |     |
| METUVN_00<br>6 | Aerosol Profiles (UVN-<br>APP)                                     | 2 | netCDF-4 | Europe               | SSD          | 60           | 60               | 60           |     | 0   | 60  |



| 00///0         |                                                                                                |                |                         |                                 | <b>V</b> 1, 10 | ocpicinoci z | 2011            |        |     |       |     |
|----------------|------------------------------------------------------------------------------------------------|----------------|-------------------------|---------------------------------|----------------|--------------|-----------------|--------|-----|-------|-----|
| METUVN_00<br>7 | Aerosol Optical<br>Thickness / Aerosol<br>Type (UVN-AOT)                                       | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
| METUVN_00<br>8 | SO2 total vertical column (UVN-SO2)                                                            | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
| METUVN_00<br>9 | HCHO total vertical column (UVN-HCHO)                                                          | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
| METUVN_01<br>0 | BrO total vertical column (UVN-BRO)                                                            | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
| METUVN_01<br>1 | OCIO slant column<br>(UVN-OCLO)                                                                | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
| METUVN_01      | Glyoxal total vertical<br>column (UVN-<br>CHOCHO)                                              | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
| METUVN_01<br>3 | Surface UV irradiance (UVN-IRR)                                                                | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
| METUVN_01<br>4 | Surface albedo (UVN-<br>ALB)                                                                   | 2              | netCDF-4                | Europe                          | SSD            |              |                 |        |     |       |     |
|                | UVN processing of external algorithms                                                          |                | TBD                     |                                 | TBD            | TBD          | TBD             | TBD    | TBD | TBD   | TBD |
|                | TBD                                                                                            |                |                         |                                 |                |              |                 |        |     |       |     |
|                | UVN Internal<br>Products archived                                                              |                |                         |                                 |                |              |                 |        |     |       |     |
| FSD_000        |                                                                                                |                |                         | RETRAN                          | SMISSION OF FO | REIGN SATEL  | LITE DATA (FSD) |        |     |       |     |
| FSD_001        | As defined in [DISSEMIN] plus growth potential for FSD improved performances. Overall 10 Mbps. | as<br>received | as received             |                                 | as received    | 0            | 0.0166          | 0.0166 | 0   | 0     | 0   |
| DCP_000        |                                                                                                |                |                         |                                 | DCP            | SERVICE      |                 |        |     |       |     |
| DCP_004        | DCP signal                                                                                     |                | digitalised RF spectrum | Earth disc<br>(5°<br>elevation) | 0              | on event     | 0               | 0      | 0   | 0     | 0   |
| DCP_001        | Messages                                                                                       |                |                         | Earth disc<br>(5°<br>elevation) | 0              | ad hoc       | 0.01            | 0.01   | 0   | 0.001 | 0   |
| DCP_002        | Bulletins                                                                                      |                |                         | Earth disc<br>(5°<br>elevation) | 0              | ad hoc       | 1               | 1      | 1   | 60    | 0   |
| DCP_003        | Derived statistical results                                                                    |                |                         | Earth disc<br>(5°<br>elevation) | 0              | ad hoc       | 0               | 0      | 0   | 60    | 60  |
| SAR_000        |                                                                                                |                |                         |                                 | SA             | R Service    |                 |        |     |       |     |



| SAR_001 | SAR signal        | RF an | alog Earth disc<br>(5°<br>elevation) | 0 | continuous | 0    | 0    | 0    | 0    | 0    |
|---------|-------------------|-------|--------------------------------------|---|------------|------|------|------|------|------|
| SM_000  | Services Messages |       |                                      |   |            |      |      |      |      |      |
| SM_001  | ADMIN             | Aso   | cii 0                                | 0 | 1440       | 30   | 15   | 0    | 1440 | 1440 |
| SM_002  | NEWS              | Aso   | cii 0                                | 0 | ad hoc     | 1440 | 1440 | 1440 | 1440 | 1440 |
| SM_003  | REG-RPT           | Aso   | cii 0                                | 0 | week       | 1440 | 1440 | 1440 | 1440 | 1440 |





**Notes:** (1) BUFR and GRIB2 formats are defined in [WMOcode]. Further information concerning EUMETSAT's implementation thereof can be found on the EUMETSAT website, navigating thus: 'Access to Data' / 'Meteosat Meteorological Products' / 'BUFR & GRIB2'. Both formats include encoded quality control indicators. The NetCDF-4 (Network Common Data Form) format is defined in **Error! Reference source not found.** 

**Notes:** (2a) Disc *coverage* for meteorological products means <65° around SSP.

**Notes:** (2b) Full disc for raw *images* includes deep space around the earth.

**Notes:** (3) When expressed in km the resolution applies at SSP.

**Notes:** (4) Generation means as available in the *EUMETSAT Data Centre*. The real-time dissemination frequency of the products may be different from their generation frequency.

**Notes:** (5) The operational practice is that data sets are disseminated hourly at (00:00, 01:00, 02:00, ...).