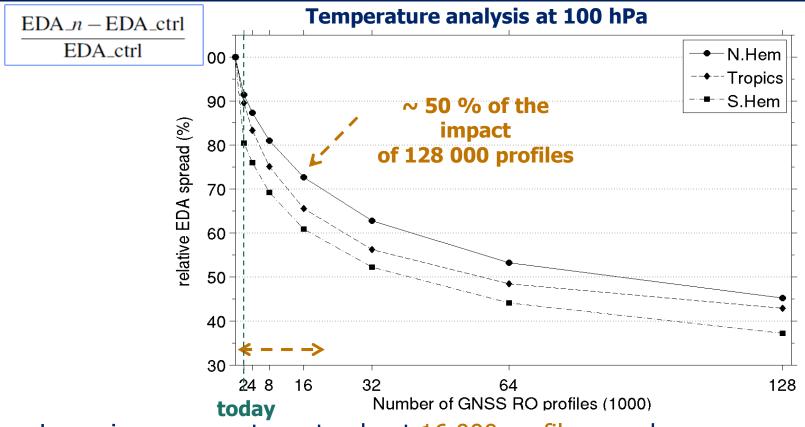

1 CGMS-43 EUM-WP-12 Presentation

STATUS OF EUMETSAT STUDY ON RADIO OCCULTATION SATURATION WITH REALISTIC ORBITS

Overview

- Study Background
 - Early "random" distribution study results
 - Updated realistic study objectives
 - Scenarios investigated
 - EDA (Ensemble Data Assimilation)
- COSMIC-2 Impact Investigation
- COSMIC-2 Polar Mitigation Investigation
- Jason-CS Impact Investigation
- Summary


Background: Random Distribution ESA/ECMWF Study*

- Initially it was unclear whether there is a saturation number of radio occultation (GNSS-RO) observations, beyond which the NWP impact would be negligible
- In October 2011, ESA initiated a study with ECMWF on "Estimating the optimal number of GNSS radio occultation measurements for Numerical Weather Prediction and climate reanalysis applications":
 - Use "Ensemble of Data Assimilations" (EDA) analyses approach to estimate optimal number of GNSS-RO.
 - Used up to 128,000 simulated observations per day (currently about 3,000 real observations)
 - Conclusion: 16,000 occultations per day gives 50% improvement of 128,000 observations
 - Limitation: assumed randomly distributed events in time and space
- Study results led to recommendations at IROWG and WMO workshops to aim for a constellations to make 10,000 to 16,000 GNSS-RO observations operationally available per day

F. Harnisch, S. B. Healy, P. Bauer and S. J. English, 2013: Scaling of GNSS radio occultation impact with observation number using an ensemble of data assimilations, Mon. Wea. Rev., 141, 4395-4413. doi: http://dx.doi.org/10.1175/MWR-D-13-00098.1

Background: Random Distribution Results

- Large improvements up to about 16 000 profiles per day
- Even with 32,000 128,000 occs/day still improvements visible

 \rightarrow no evidence of saturated impact up to 128 000 profiles (although the additional impact per observation is decreasing)

Background: Realistic Distribution EUM/ECMWF Study

- To address the random distribution limitation, EUMETSAT initiated a study on "Impact of different Radio Occultation Constellations on NWP and Climate Monitoring" in 2013. Proposal received from ECMWF was selected, study was kicked-off in March 2014. Main study aims/setup:
 - Work with simulated LEO and GNSS orbits for realistic occultation distribution
 - Identified different scenarios to address the following questions/issues:
 - Refine earlier ESA/ECMWF study with realistic future satellite orbits
 - Assess best observation constellation to achieve best distribution in space and time
 - Provide guidance on RO instrument deployments on future LEO satellites
 - Study duration 18 month, final results in Q3/2015
 - Study period investigated: July 2008
 - Addresses/Relevant for CGMS Actions/Recommendations (summary also provided in IROWG-4 IROWG-WP-13 document):
 - Plenary IV.4 A40.06 (provides info)
 - WGII A40.23 (suggest closure; IROWG-4 workshop April '15, CEOS agencies present)
 - WGIII/2.1 R41.14 (provides info)
 - WGIII/2.2 A42.06 (suggest closure; study results presented early and at IROWG-4)
 - Main ECMWF scientists involved: Sean Healy, Andras Horanyi, (Florian Harnisch)

Background: Scenarios Selected

- Focus was time frame of > 2020, thus including missions:
 - EPS-SG, 2 satellites carrying RO with up to 4 GNSS observed
 - fully deployed COSMIC-2 constellations (full deployment from launch might take up to 2 years)
 - Jason-CS carrying an RO receiver
 - LEO opportunity missions in sun-synchronous orbit carrying RO receiver
- Scenarios investigated included:
 - impact of not having COSMIC-2 Equator and Polar
 - impact of not having COSMIC-2 Polar
 - adaptation strategies to compensate for COSMIC-2 Polar
 - impact of observing 4 GNSS in one orbit, thus having > 5,000 occultations at specific local solar times (EPS-SG, sun-synchronous orbits)
- Full Scenario List available in WP and in Slide Backups

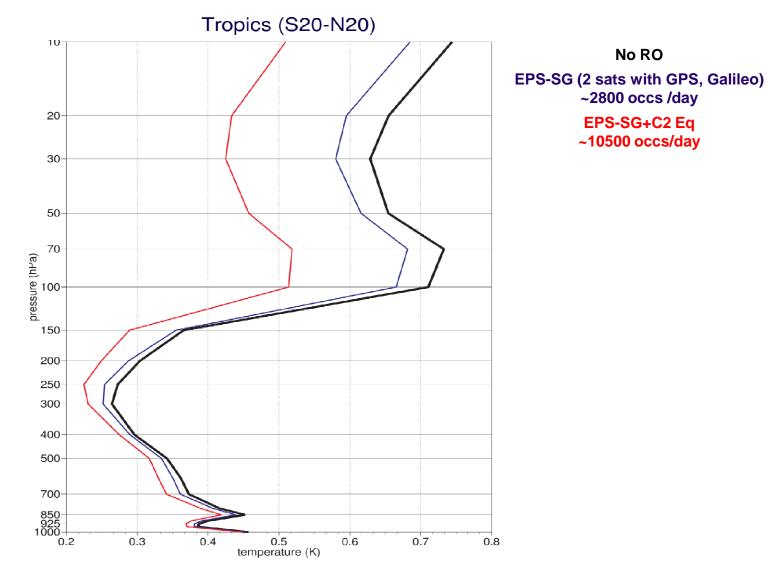
Background: EDA Method

- Goal: derive information on the analysis and short-term forecast error statistics (uncertainties) of the NWP model system
- Account properly for the main analysis error sources in the NWP system that come from the:

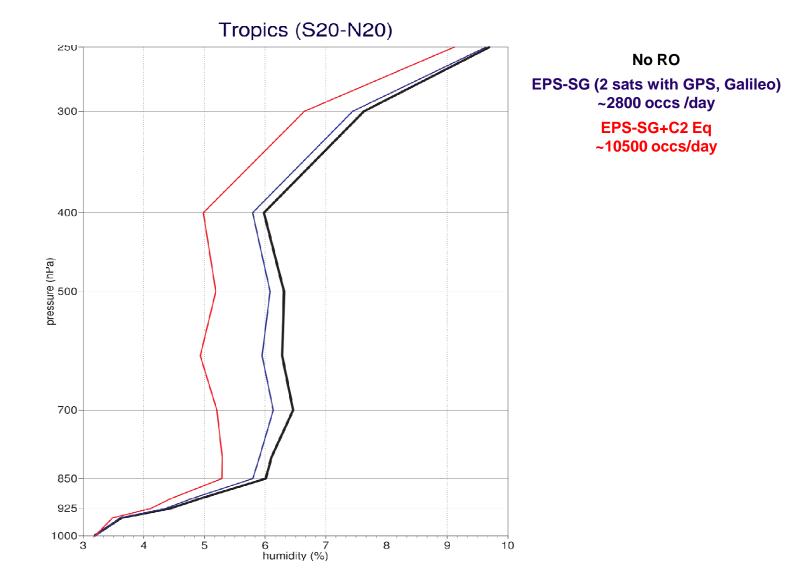
(1) observations, (2) model background and (3) model

- Run an ensemble of independent 4D-Var data assimilation cycles
 - → ensemble of analyses and forecasts provides information on analysis and forecast <u>error statistics</u>

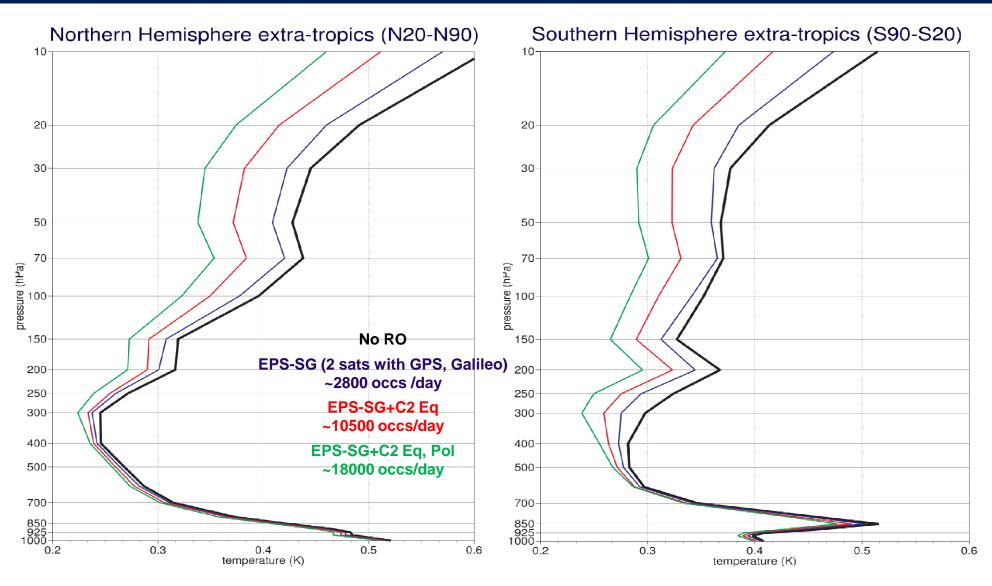
(This is a well established method primarily used for data assimilation; see for instance Žagar et al. 2005; Isaksen et al. 2010, Bonavita et al. 2010, 2012)

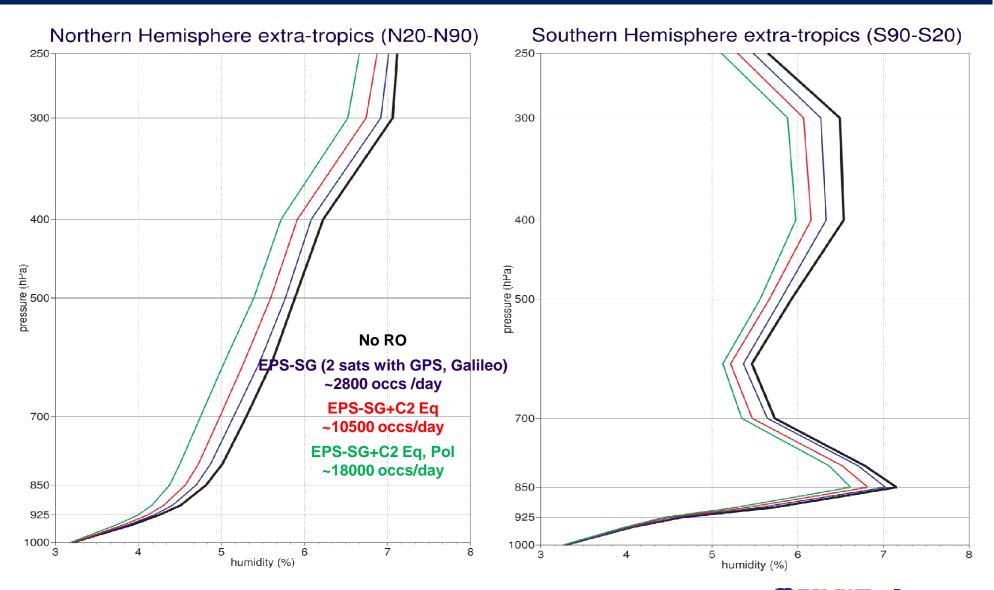

→ Different to OSSEs, which simulate all observations from a known truth the nature run.

COSMIC-2 Impact Investigation

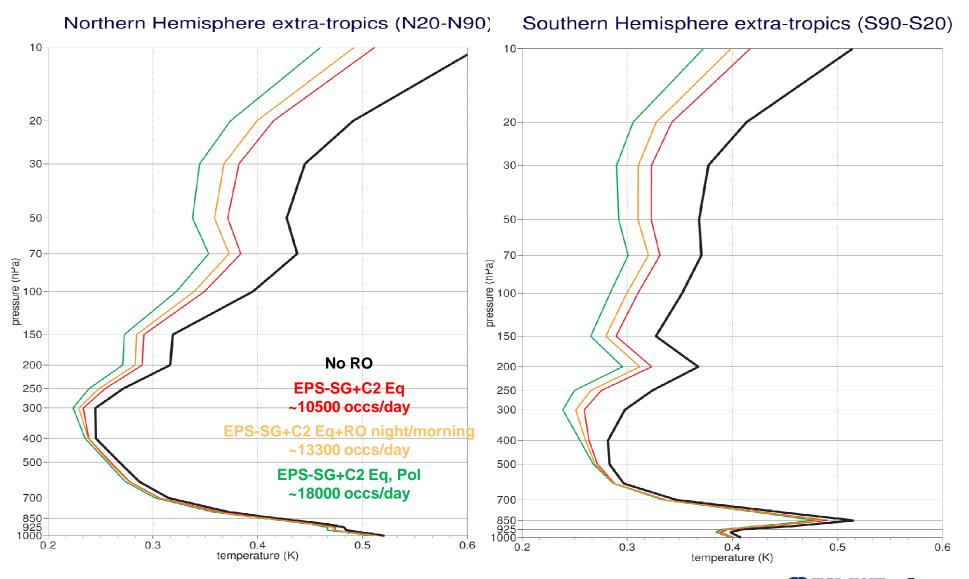


COSMIC-2 Eq Impact: Temperature (tropics)


COSMIC-2 Eq Impact: Rel. Hum. (tropics)

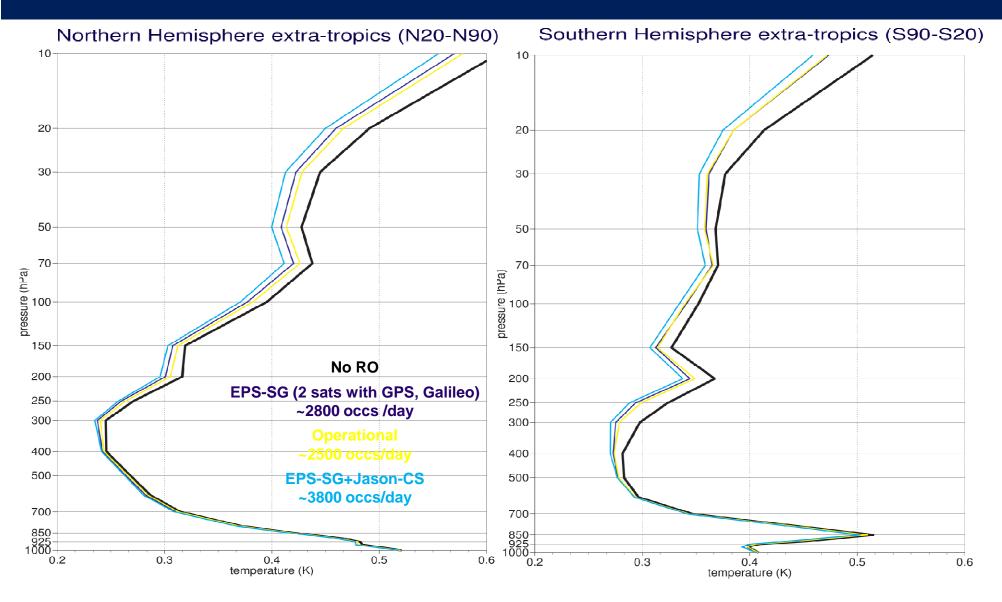

COSMIC-2 Impact: Temperature (extra tropics)

COSMIC-2 Impact: Rel. Hum. (extra tropics)


EUMETSAT

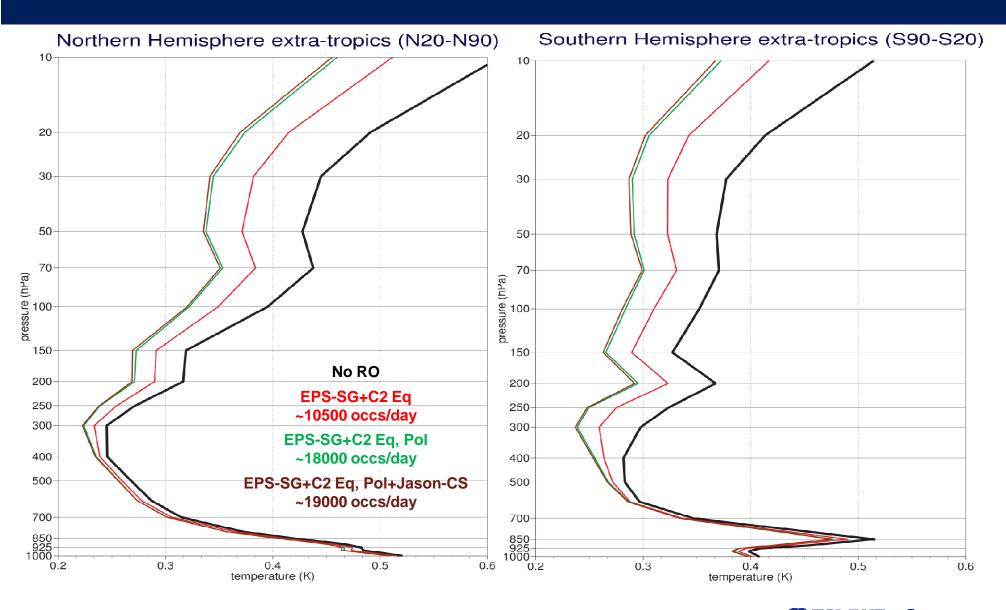
COSMIC-2 Polar Mitigation Investigation

COSMIC-2 Pol Mitigation Impact: Temp (extra tropics)



EUMETSAT

Jason-CS Impact Investigation



Jason-CS Impact (1): Temperature (extra-tropics)

Jason-CS Impact (2): Temperature (extra-tropics)

EUMETSAT

Summary / Open Points

Summary

- Investigated 2,000-19,000 observations per day. EDA spread values are determined mainly by observation numbers, rather than orbits.
- One can quantify impact of both COSMIC-2 Equator and COSMIC-2 Polar relative to EPS-SG. Full COSMIC-2 constellation has largest improvements.
- Main improvements above about 100hPa in temperature; relative humidity improvements (particularly at tropics within 300-850hPa) and in zonal wind (particularly at 100-400 hPa layer, and above 50 hPa; only shown in WP)
- 4 sun-synchronous RO satellites cannot compensate for COSMIC-2 Polar.
- Jason-CS & EPS-SG together have greater impact than current operational data.
- Jason-CS is particularly important in the absence of COSMIC-2 Polar.
- No saturation is seen in one orbit, even with 4 GNSS observed (only shown in WP).

Open Points

 As mission planning has long lead time the timely availability of ICDs is mandatory in order to exploit the new GNSS. For EPS-SG this in particular refers to GLONASS and BeiDou use (L1 & L5, CDMA signals).

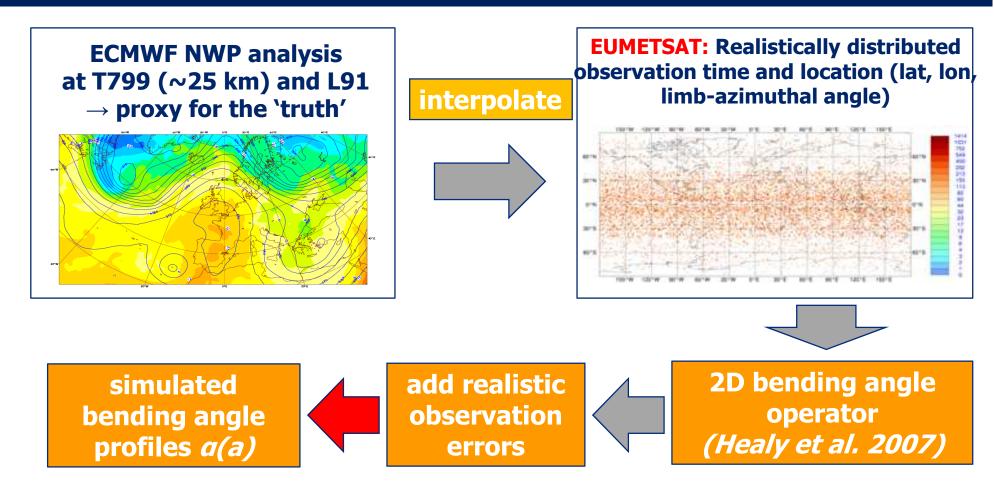
• IROWG-4 NWP group recommends to further investigate EDA vs. OSSE

Backup/Further Information

Realistic Distribution Scenarios investigated

Scenario	LEO Satellites	GNSS Satellites	Info
4	EPS-SG A1, B1	GPS Galileo	2 EPS-SG satellites, about 2,800 occultations /day
6	EPS-SG A1 RO-Night	GPS Galileo	2 RO satellites, about 2,800 occultations/day; check 2 RO in one orbit plane to 2 RO in different ones
7	EPS-SG A1, B1	GPS Galileo GLONASS BeiDou	2 EPS-SG satellites, about <u>5,100</u> occultations /day; maximum number of occultations in one orbit, is a saturation visible in one orbit?
8	EPS-SG A1, B1 COSMIC-2 Eq	GPS Galileo	2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, about <u>10,500</u> occultations/day; check impact of few occultations at high/mid latitudes
9	EPS-SG A1, B1 COSMIC-2 Eq COSMIC-2 Pol	GPS Galileo	2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, 6 COSMIC-2 Polar satellites, about <u>18,000</u> occultations/day
10	EPS-SG A1, B1 RO-Night RO-Early Morning	GPS Galileo	4 RO satellites, about <u>5,400</u> occultations/day; check 4 RO coverage compared to COSMIC-2 Polar, Equator
11	EPS-SG A1, B1 COSMIC-2 Eq RO-Night RO-Early Morning	GPS Galileo	10 RO satellites, about <u>13,300</u> occultations/day; check how 4 sun-synchronous RO satellites compensate for no COSMIC-2 Polar
13	EPS-SG A1, B1 Sentinel-6	GPS Galileo	2 EPS-SG satellites, one Sentinel-6 (Jason-CS) satellite, about <u>3,800</u> occultations/day
14	EPS-SG A1, B1 COSMIC-2 Eq, Pol Sentinel-6	GPS Galileo	2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, 6 COSMIC-2 Polar satellites, one Sentinel-6 (Jason-CS) satellite, about <u>19,000</u> occultations/day
15	EPS-SG A1, B1 COSMIC-2 Eq, Pol LEO-1 (06:00) LEO-2 (10:30) LEO-3 (13:30) Sentinel-6	GPS Galileo	2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, 6 COSMIC-2 Polar satellites, Sentinel-6 satellite, one early morning LEO, one in close by EPS-SG orbits, one in early afternoon orbit, about <u>22,800</u> occultations/day

Note: Scenarios started from a "Wish List" and were then refined, thus some scenario were not investigated in study.



EDA: Setup

- The EDA spread is computed from the 00 and 12 UTC analyses.
- Mostly temperature spread is presented since the largest impact is in temperature
- Spread vertical profiles are plotted
- Time period for averaging: days July 11-25, 2008.
- Regions for averaging: NH extra-tropics (N20-N90), SH extra-tropics (S90-S20), tropics (S20-N20)

EDA: GNSS RO Observation Simulation

bending angles on 247 fixed impact heights $h(a - R_c)$ similar to operationally used GRAS data

EDA: Comparison to OSSEs

- **OSSEs:** simulate all observations from a known truth *the <u>nature run</u>*.
 - The simulated observations are assimilated into an NWP system, and <u>individual analysis and/or forecast errors, ε,</u> can computed because the truth is known.
 - The **statistics** of the analysis/forecast errors can be computed by averaging errors, ε, over the experiment.
- EDA: Estimates the analysis and forecast error covariance matrices not the forecast errors based on the assumed observation/model error statistics.

