

Dohyeong Kim and Werner Balogh (Co-Chairs)

Ken Holmlund and Mitch Goldberg (Rapporteurs)

Presented to CGMS-46 Plenary session, agenda item E.6

WG II on "Satellite Data and Products"

WG II serves as important link between the annual CGMS meetings and the CGMS International Science Working Groups which provide regular reports and feedback to CGMS.

These are currently:

- International TOVS working group (ITWG)
- International Radio Occultation Working Group (IROWG)
- International Precipitation Working Group (IPWG)
- International Satellite Winds Working Group (IWWG)
- International Clouds Working Group (ICWG)

WG II is also the primary interface between CGMS and other international initiatives, such as GSICS and SCOPE-CM and user communities, such as those organized in the areas of oceanography and marine meteorology, and atmospheric composition.

Overview of Session

WGII/1: Welcome and opening

WGII/2: Election of WG II Co-Chair Werner Balogh (WMO)

WGII/3: Review of Actions and Recommendations

WGII/4: Interaction between WGII and ISWGs

WGII/5: International Science Working Groups and initiatives 16 WPs (IWWG, IPWG, ITWG, ICWG, IROWG, GSICS, SCOPE-CM, SCOPE-Nowcasting)

WGII/6: Other international science community reports (Oceans, CEOS VCs, ...) 5 WPs

WGII/7: High priority topics to members 5 WPs

WGII/8: Preparation for future generation of Indian geostationary and scatterometer

missions 2 WPs

WGII/9: Agency reports 9 WPs

WGII/10: WPs responding to, or raising, CGMS Actions 2 WPs

WGII/11: Space Weather matters

WGII/12: Review and updating HLPP 2 WPs

 Σ = 41 WPs (2017: 36; 2016: 37; 2015: 64; 2014: 50)

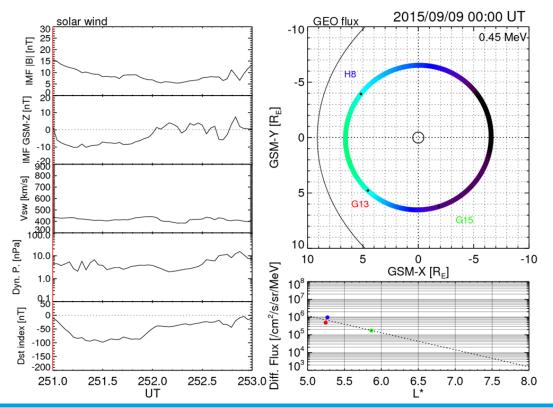
~46 participants Monday 9.00-18.00 Tuesday 9.00-18.30

WGII/5 - International working groups/initiatives

GSICS – performance monitoring "specification and requirements"

CGMS-45.05 GSICS to produce annual state of the observing system report to be delivered at CGMS **GSICS-EP-18.A01**: GRWG to prepare specifications and methodologies for CGMS agency development of operational instrument performance monitoring systems

A.GRWG.2018.10b.1: GRWG Chair to coordinate each agency to provide to define minimum information for performance monitoring "specification and requirements" by 15 May 2018.

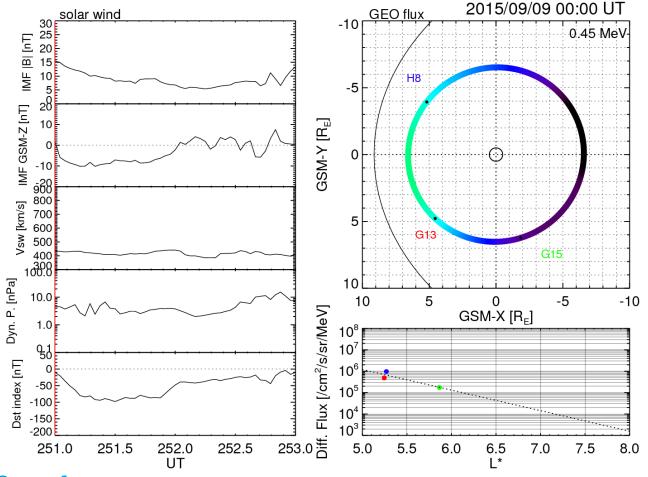

		Parameters			
	Spacecraft	Status (attitude, velocity, position, etc.)			
Engineering	Instrument	Temperature (Detector, Blackbody, Cooler, Radiator, Blackbody, Stage Outgas Htr, Optics, Loop Heat Pipe, Scan Mirror, Motor, Antenna, Optics, Power, FPM, etc.), Voltage (Power), scan rate, SRF, service status, *current(dark, motor, etc.)			
	Calibration	DC and Temperature (Space, blackbody, solar diffuser), Coefficient(Gain, Intercept)			
	Radiometric Cal.	SNR, NEdT(NEdN), Trend(slope), Consistency, Stability			
Calibration	Geometric Cal.	Bias, stability, residual, band-to-band/pixel-to-pixel co-registration, #(valid) of landmark(or stars), Errors(striping) status			
	Cross/Vicarious/ Model O-B	GEO-LEO Tb Bias, Reflectance Ratio, Desert/DCC/Lunar calibration, O-B Bias			
GDWG inputs		Implementing user notification function (e.g. alerting via email in case of calibration anomaly) Linking calibration event logging information			
Product		Level1B data, Image Max/Min/Mean/Median/Invalid, stability			

WGII/5 - International working groups/initiatives

GSICS

CGMS members to provide points of contacts for space weather instrument inter-calibration. (Ref. CGMS-46-GSICS-WP-01)

Distribution of high energy electron flux in GEO from several meteorological satellites



Slide: 5 CGMS WG II, 7 June 2018

Distribution of high energy electron flux in GEO from several meteorological satellites

Add CGMS agency logo here (in the slide master)

WGII/5 - International working groups

> Soundings

- CGMS members to provide a summary of their known unfilled spectroscopy needs, and to develop a means of facilitating interaction between laboratory spectroscopy groups to spur cooperation and mitigate the lack of resources (financial and persons). (Ref. CGMS-46-ITWG-WP-01)
- R-CGMS member are encouraged to take due consideration to climate applications requirements during the planning for new meteorological satellite missions. (Ref. CGMS-46-ITWG-WP-01)
- R-CGMS members should give due consideration to potential impacts of changes to instrument data processing changes. Specifically ITWG proposes that if the expected maximum change (temporally, geographically) in the observed brightness temperature of any channel of the instrument exceeds 0.1K or 20% of NEdT (whichever is smaller) it should be made clear in notifications to users. User notifications to be made no later than 8 weeks in advance of the change and with test data (at least a few orbits, ideally more) provided whenever possible.

WGII/5 - International working groups

Radio Occultation

- R-CGMS members should consider hosting radio occultation payloads on future missions (Ref. CGMS-46-IROWG-WP-01).
- Action IROWG to establish principles for consistent quality control for RO to enable easier quality assessment

Winds

- IWWG to provide information to clarify their preference for flying the Metop satellites in a TRISTAR configuration.
- IWWG to look at improving quality indicators for high resolution wind derivation for mesoscale and regional applications.
- IWWG to consider developing climate projects from Atmospheric Motion Vectors (AMVs) and to report to the CEOS/CGMS WGClimate with a potential pilot project. (Ref. CGMS-46-IWWG-WP-01)

> Precipitation

- Next meeting 5 -9 November, 2018, Seoul, Korea
- > Clouds

Next (2nd) meeting 29 October - 2 November 2018, Madison, USA

NS

WGII/5 - International working groups/initiatives

> SCOPE-Climate Monitoring

SCOPE-CM Executive Panel Chair to convene a strategy planning meeting with high-level representatives from SCOPE-CM members and other interested agencies, who are empowered to authorise resources, to agree on a revised strategy for SCOPE-CM and a new Implementation Plan, which shall be reported back to CGMS-47. (Ref. CGMS-46-WMO-WP-10)

CEOS-CGMS WG Climate

- Space Agency Response to the 2016 GCOS Implementation Plan
- Gap analysis report and Coordinated Action Plan based on ECV Inventory 2.0
- CGMS Baseline
- ECWMF OSEs vs FSOI
 - CGMS members to provide comments on the impact studies conducted by ECMWF on OSEs vs. FSOI and how CGMS members can benefit from the findings. (Ref. CGMS-46-WMO-WP-13)
- > SCOPE Nowcasting
 - 4 pilot projects

Slide: 9 CGMS WG II, 7 June 2018

SCOPE-NWC Projects

Category	Product	Region	Provider	User	Gaps
Basic nowcasting	RGB composites	WMO Region II (Asia) and Region V (SW Pacific)	JMA, CMA, KMA	NMSs in Region II and V	No standard products available; products limited
Advanced nowcasting	Volcanic Ash Products	Global	CMA, JMA, KMA, EUMETSAT, NOAA	NMHSs, VAACs	No standard products available; products limited
Advanced nowcasting	Blended satellite global precipitation product (GEO+LEO)	Global coverage	Hydro Estimator, NASA TRMM (3B42), NOAA (real-time MW)	Civil authorities, NMHSs, Flash flood guidance systems, general users	Rapid, facilitated access to quantitative precipitation estimates
RT Atmospheric Composition products	Dust Monitoring and Prediction Products	WMO Region II (Asia) and V (South-West Pacific)	CMA, JMA, KMA	SDS-WDCs, NMSs (to issue results and warnings) in RAII and RAV	Regional diversity of aerosol-related products not harmonized

OULOOK:

RGB composites: Continue to develop improved RGB recipes that maximize

sensor-to-sensor consistency and remain engaged with users

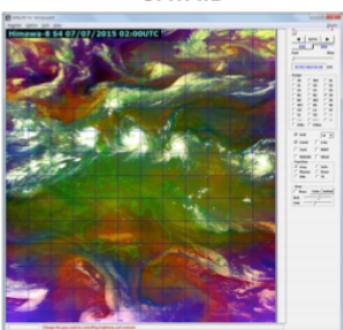
Volcanic Ash: Planning for the final stage of the inter-comparison is underway

Precipitation: Development of validation procedures and transition from prototype

to operational implementation

Dust Products: Focus on comparing and validating CMA, JMA, and KMA dust

Coordination Group for Meteorological Satellitesproducts; integration with forecast models


CGMS WG II, 7 June 2018

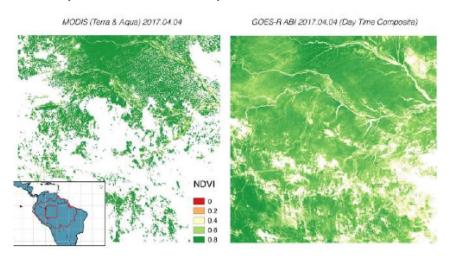
Pilot Project 1: RGB Composites – Benefits and Outlook

- Much improved RGB availability for NMHSs within WMO Regions II and V
- Improving inter-sensor product consistency
- Better coordination between data providers and host agencies
- Improved end user engagement and understanding of RGB's

Outlook: Continue to develop improved RGB recipes that maximize sensor-to-sensor consistency and remain engaged with users

SATAID

Proposed New Pilot Projects


Category	Product	Region	Pilet Leads	Tier	Gaps
Nowcasting in a Big Data World	Multi-sensor feature based nowcasting of convective impacts	Demonstration studies in area of interest	NOAA and ABOM (M. Pavolonis and L. Majewski)	HMSs	Lack of standards and coordination on products that diagnose and nowcast convective starms using satellite data in tandem with other data sources
Advanced Nowcasting	Utilization of low-level satellite- derived maisture fields for nowcasting convective development	TBD	EUMETSAT (J. Grandell)	NMHSs	Full utilization of hyperspectral infrared measurements for convective forecasting
Advanced Incorporating satellite-based Nowcasting INW observations about condensed water into nowcasting applications		Tropics	JPL (Z. Haddad)	NMHSs Airlines	MW measurements, such as GMI, can be better utilized for nowcasting

Weather-Climate-Water

WGII/5 - International working groups/initiatives

- ➢ GOFC-GOLD (Fire)
 - CGMS members to provide points of contact for GOFC-GOLD to the CGMS Secretariat (Ref. CGMS-46-GUEST-WP-02)
- > AEROSAT (aerosols)
 - CGMS members to provide points of contact for AEROSAT to the CGMS Secretariat (Ref. CGMS-46-GUEST-WP-01
- Land Monitoring from Geostationary Satellites
 - NASA presentation (NASA-WP-4 #4)

CGMS

WGII/6 - Other International Science Community reports

Operational Satellite Oceanography

 CGMS to endorse the "First International Operational Satellite Oceanography Symposium" as a CGMS activity and to nominate points of contact for serving on the Symposium Programme Committee. (Ref. CGMS-46-NOAA-WP-11)

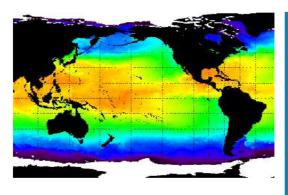
> NOAA CMA Flood Mapping Initiative

 CGMS members interested in participating in the CMA/NOAA operational flood mapping initiative to contact Mitch Goldberg (mitch.goldberg@noaa.gov). (Ref. CGMS-46-NOAA-WP-10)

Second International Indian Ocean Expedition

 R-CGMS Secretariat to consider organizing a special plenary session or a side event on operational oceanography at CGMS-47 to help advance the operational nature of ocean observation. (Ref. CGMS-46-NOAA-WP-11, CGMS-46-IOC-UNESCO-WP-02)

Polar Space Task Group


 CGMS members to provide points of contact to support the work of the WMO Polar Space Task Group (PSTG) to the CGMS Secretariat and to engage with the Global Cryosphere Watch (GCW) for that task. (Ref. CGMS-46-WMO-WP-12)

₅MS

Co

Meteorological Satellites

First International Operational Satellite Oceanography Symposium

18 to 19 June 2019 Washington, DC Area FIRST INTERNATIONAL OPERATIONAL SATELLITE OCEANOGRAPHY SYMPOSIUM

Satellite remote sensing of ocean properties is a technology of continuously increasing maturity and scope. Sea surface temperature, sea surface height, ocean color, sea ice, ocean winds, roughness-derived parameters (e.g., oil spills) and other measurements are now available on a routine and sustainable basis. Some of these products are integral to operational applications for routine and event-driven environmental assessments, predictions, forecasts and management. Yet ocean satellite data are still underutilized and have a huge potential for contributing further to societal needs and the "blue economy".

The First Operational Satellite Oceanography Symposium aims to enable the understanding the barriers (perceived or actual) and facilitate the widespread incorporation of satellite ocean observations into the value chain from data to useful information across the range of operational applications. In this symposium, an international community of satellite operators, information producers and users will exchange facts and ideas to 1) understand user needs and expectations, and 2) develop interoperability standards and establish best practices that will lead to more universal use of ocean satellite data.

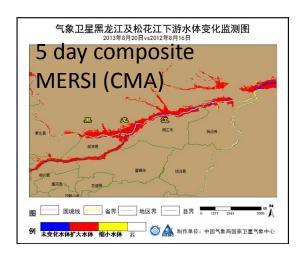
NOAA Center for Weather and Climate Prediction

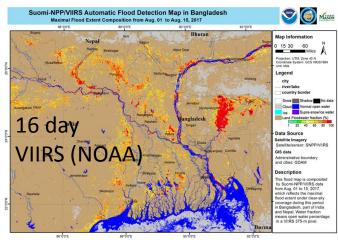
Gollege Park, MD USA

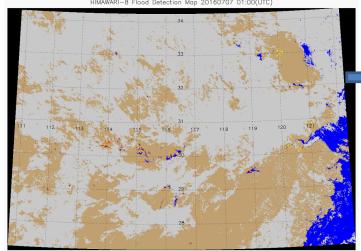
18 & 19 June 2019

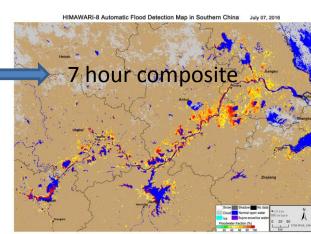
Convenient access from Washington DC

STEERING COMMITTEE


Bojan Bojkov (EUMETSAT) Chris Brown (NOAA) Paul DiGiacomo (NOAA) Veronica Lance (NOAA) Francois Montagner (EUMETSAT)


Web Address to follow


New Capabilities: Flood mapping from operational LEO and GEO meteorological imagers


Floods monitoring from LEO satellites in cloudy prone regions often requires multiday compositing

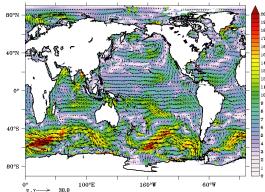
The much improved temporal resolution from the new generation of geostationary satellites can mitigate cloud contamination

Coordination Group for Meteorological Satellites

CGMS

FreeGIF

WGII/7 - Selected topics of high priority


- Possible gaps on passive microwave measurements (PMW) for nowcasting
 - EUMETSAT and IMD to establish contact for collaboration on SAF Nowcasting activities (Ref. CGMS-46-IMD-WP-06)
- Validation of Himarawi 9 /AHI Level 1 and -2 data products
- CMA report on development of non-meteorological products
- GOES-16 Contributions to a Weather Ready Nation
- Reprocessing of NOAA/JPSS SNPP Sensor Data Records
 - Recommendation: CGMS to take note of the status of the NOAA/JPSS SNPP Reprocessing of Sensor Data Records reprocessing effort and encourage all satellite operators to reprocess their mission data and make them easily accessible. (Ref. CGMS-46-NOAA-13)

WGII/8 - Preparation for future generation of Indian Geostationary and Scatterometer Missions

ISRO's R&D (Value Added) Products: SCATSAT-1 (www.mosdac.gov.in)



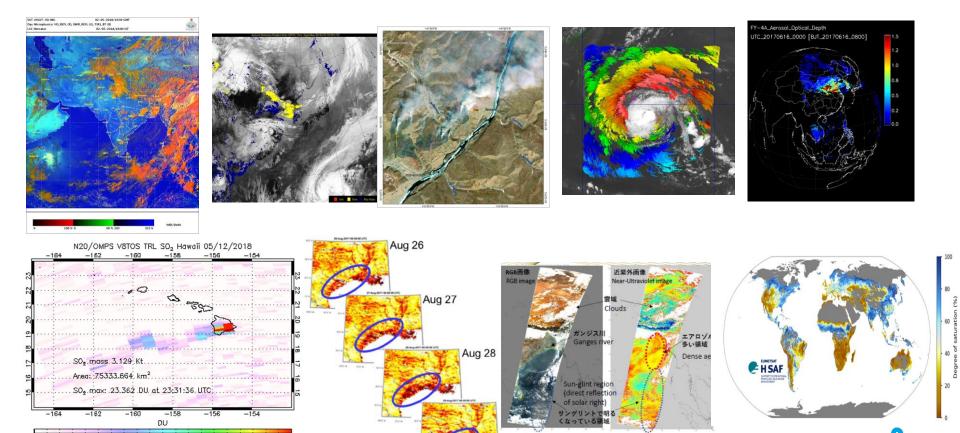
Daily Single NetCDF with 13 wind derived parameters generated by merging Level-2B SCASAT-1 data with NCMRWF (UK-Met Office NWP) model through Parallel-OI. Period: 03-Oct-2016 to till date

High spatial density winds (L4HW: 06.25km)

Cyclone MORA (29-May-2017)

Coordination Group for Meteorological Satellites

AWVs Product parameters


	Avv v 3 i Tou det parameters	
Sr. No.	Parameter	Unit
1.	Uobs (observed zonal wind speed)	m/s
2.	Uanal (analyzed zonal wind speed)	m/s
3.	Uestd (analysis error standard deviation in zonal wind speed)	m/s
4.	Vobs (observed meridional wind speed)	m/s
5.	V (analyzed meridional wind speed)	m/s
6.	Vestd (analysis error standard deviation in meidional wind speed)	m/s
7.	Taux (analyzed zonal wind stress)	Pa
8.	Tauy (analyzed meridional wind stress)	Pa
9.	Divg (analyzed wind divergence)	Sec-1
10.	Curl (analyzed wind stress curl)	Pa/m
11.	QIh (analyzed latent heat flux)	W/m²
12.	Qsh (analyzed sensible heat flux)	W/m²
13.	NS (number of samples per day)	Numb er

CGMS WG II, 7 June 2018

WGII/9 - CGMS agency reports on highlights and issues in dataset and product generation

> IMD, KMA, ROSHYDROMET, JMA, CMA, NOAA, NASA, JAXA, EUMETSAT

WG II/12 - Review and updating of the HLPP

- The WG reviewed the items of the HLPP related to its work and provided progress updates on the following items:
 - > 3.2.2 Assimilation of high resolution winds
 - > 3.2.3 Development of ash products
 - > 3.2.6 Data utilisation, products generation and
 - 3.5.1 Sustained interaction with Nowcasting communities
 - > 3.6.1 Support for line-by-line reference model development
 - 3.6.2 Validation and inter-comparison of LBL models/spectroscopy
 - > 3.7.1 Trade off studies for infrared sounders

Coordination Group for Meteorological Satellites

WG II/16 - Review of Actions of Past CGMS Sessions

- > The WG reviewed the actions and recommendations of past CGMS sessions related to its work
- The following actions were proposed to be closed:
 - A44.13
 - A45.01
 - A45.07
 - A45.08
 - A45.09
 - A45.10
 - A45.11
- Further details are provided in the updated list of CGMS actions and the updated HLPP

% CGMS

Coordination Group for Meteorological Satellites

Attention to CGMS summary

> GSICS

➤ **Action**: CGMS members to provide points of contacts for space weather instrument inter-calibration. (Ref. CGMS-46-GSICS-WP-01)

> ITWG

- ➤ Action CGMS members to provide a summary of their known unfilled spectroscopy needs, and to develop a means of facilitating interaction between laboratory spectroscopy groups to spur cooperation and mitigate the lack of resources (financial and persons). (Ref. CGMS-46-ITWG-WP-01)
- ➤ **Recommendation:** CGMS member are encouraged to take due consideration to climate applications requirements during the planning for new meteorological satellite missions. (Ref. CGMS-46-ITWG-WP-01)
- Recommendation: CGMS members should give due consideration to potential impacts of changes to instrument data processing changes. Specifically ITWG proposes that if the expected maximum change (temporally, geographically) in the observed brightness temperature of any channel of the instrument exceeds 0.1K or 20% of NEdT (whichever is smaller) it should be made clear in notifications to users. User notifications to be made no later than 8 weeks in advance of the change and with test data (at least a few orbits, ideally more) provided whenever possible.

Meteorological Satellites

CGMS WG II, 7 June 2018

Attention to CGMS summary

Radio Occultation

- Recommendation: CGMS members should consider hosting radio occultation payloads on future missions (Ref. CGMS-46-IROWG-WP-01).
- Action IROWG to establish principles for consistent quality control for RO to enable easier quality assessment

Winds

- Action: IWWG to provide information to clarify their preference for flying the Metop satellites in a TRISTAR configuration.
- Action: IWWG to look at improving quality indicators for high resolution wind derivation for mesoscale and regional applications.
- Action: IWWG to consider developing climate projects from Atmospheric Motion Vectors (AMVs) and to report to the CEOS/CGMS WGClimate with a potential pilot project. (Ref. CGMS-46-IWWG-WP-01)

CGMS

Coordination Group for Meteorological Satellites

Attention to CGMS summary

- Take not of new SCOPE-CM projects
- **➢** GOFC-GOLD (Fire)
 - Action: CGMS members to provide points of contact for GOFC-GOLD to the CGMS Secretariat (Ref. CGMS-46-GUEST-WP-02)
- AEROSAT (aerosols)
 - Action: CGMS members to provide points of contact for AEROSAT to the CGMS Secretariat (Ref. CGMS-46-GUEST-WP-01
- Possible gaps on passive microwave measurements (PMW) for nowcasting
 - Action: EUMETSAT and IMD to establish contact for collaboration on SAF Nowcasting activities (Ref. CGMS-46-IMD-WP-06)
- Recommendation: CGMS to take note of the status of the NOAA/JPSS SNPP Reprocessing of Sensor Data Records reprocessing effort and encourage all satellite operators to reprocess their mission data and make them easily accessible. (Ref. CGMS-46-NOAA-13)

*

Coordination Group for Meteorological Satellites

WGII/6 - Other International Science Community reports

Operational Satellite Oceanography

Action: CGMS to endorse the "First International Operational Satellite
Oceanography Symposium" as a CGMS activity and to nominate points of contact
for serving on the Symposium Programme Committee. (Ref. CGMS-46-NOAA-WP11)

> NOAA CMA Flood Mapping Initiative

 Action: CGMS members interested in participating in the CMA/NOAA operational flood mapping initiative to contact Mitch Goldberg (mitch.goldberg@noaa.gov). (Ref. CGMS-46-NOAA-WP-10)

Second International Indian Ocean Expedition

■ **Recommendation:** CGMS Secretariat to consider organizing a special plenary session or a side event on operational oceanography at CGMS-47 to help advance the operational nature of ocean observation. (Ref. CGMS-46-NOAA-WP-11, CGMS-46-IOC-UNESCO-WP-02)

Polar Space Task Group

 Action: CGMS members to provide points of contact to support the work of the WMO Polar Space Task Group (PSTG) to the CGMS Secretariat and to engage with the Global Cryosphere Watch (GCW) for that task. (Ref. CGMS-46-WMO-WP-12)

Co
Meteorological Satellites

Thank you

